Machine learning-based prediction of persistent oppositional defiant behavior for 5 years

被引:1
|
作者
Na, Kyoung-Sae [1 ]
Geem, Zong Woo [2 ]
Cho, Seo-Eun [1 ]
机构
[1] Gachon Univ, Coll Med, Gil Med Ctr, Dept Psychiat, Incheon, South Korea
[2] Gachon Univ, Dept Energy & Informat Technol, Seongnam, South Korea
基金
新加坡国家研究基金会;
关键词
Machine learning; random forest; oppositional defiant disorder; externalizing behavior; children; DISORDER ADHD; SYMPTOMS; COMORBIDITY; CHILDREN; RISK; DIMENSIONS; STABILITY; ODD;
D O I
10.1080/08039488.2020.1748711
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Background Early detection of oppositional defiant behavior is warranted for timely intervention in children at risk. This study aimed to build a predictive model of persistent oppositional defiant behavior based on a machine learning algorithm. Methods With nationwide cohort data collected from 2012 to 2017, a tree-based ensemble model, random forest, was exploited to build a predictive model for persistent oppositional defiant behavior. The persistent oppositional defiant behavior was defined by the presence of oppositional defiant behavior for all the five years. The area under the receiver operating characteristic curve (AUC), overall accuracy, sensitivity, specificity, and Matthew's correlation coefficients (MCC) were measured. Results Data of 1,323 children were used for building the machine learning-based predictive model. The baseline mean +/- standard deviation month-age of the participants was 51.0 +/- 1.2 months. The proportion of persistent oppositional defiant behavior was 0.98% (13/1323). In the hold-out test set, the overall accuracy, AUC, sensitivity, specificity, and MCC were 0.955, 0.982, 1.000, 0.954, and 0.417, respectively. Conclusion Our study demonstrated that the machine learning-based approach is useful for predicting persistent oppositional defiant behavior in preschool-aged children.
引用
收藏
页码:505 / 510
页数:6
相关论文
共 50 条
  • [1] Machine Learning-based Electric Vehicle User Behavior Prediction
    Lilhore, Aakash
    Prasad, Kavita Kiran
    Agarwal, Vivek
    2023 IEEE IAS GLOBAL CONFERENCE ON RENEWABLE ENERGY AND HYDROGEN TECHNOLOGIES, GLOBCONHT, 2023,
  • [2] Machine learning-based prediction of transfusion
    Mitterecker, Andreas
    Hofmann, Axel
    Trentino, Kevin M.
    Lloyd, Adam
    Leahy, Michael F.
    Schwarzbauer, Karin
    Tschoellitsch, Thomas
    Boeck, Carl
    Hochreiter, Sepp
    Meier, Jens
    TRANSFUSION, 2020, 60 (09) : 1977 - 1986
  • [3] Ensemble machine learning-based algorithm for electric vehicle user behavior prediction
    Chung, Yu-Wei
    Khaki, Behnam
    Li, Tianyi
    Chu, Chicheng
    Gadh, Rajit
    APPLIED ENERGY, 2019, 254
  • [4] Machine Learning-based BGP Traffic Prediction
    Farasat, Talaya
    Rathore, Muhammad Ahmad
    Khan, Akmal
    Kim, JongWon
    Posegga, Joachim
    2023 IEEE 22ND INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, BIGDATASE, CSE, EUC, ISCI 2023, 2024, : 1925 - 1934
  • [5] Machine learning-based prediction models in neurosurgery
    Habashy, Karl J.
    Arrieta, Victor A.
    Feghali, James
    NEUROSURGICAL FOCUS, 2023, 55 (03)
  • [6] Machine Learning-based Prediction of Test Power
    Dhotre, Harshad
    Eggersgluess, Stephan
    Chakrabarty, Krishnendu
    Drechsler, Rolf
    2019 IEEE EUROPEAN TEST SYMPOSIUM (ETS), 2019,
  • [7] Machine Learning-based Water Potability Prediction
    Alnaqeb, Reem
    Alrashdi, Fatema
    Alketbi, Khuloud
    Ismail, Heba
    2022 IEEE/ACS 19TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2022,
  • [8] Machine Learning-Based Prediction of Air Quality
    Liang, Yun-Chia
    Maimury, Yona
    Chen, Angela Hsiang-Ling
    Juarez, Josue Rodolfo Cuevas
    APPLIED SCIENCES-BASEL, 2020, 10 (24): : 1 - 17
  • [9] Practical Machine Learning-Based Sepsis Prediction
    Pettinati, Michael J.
    Chen, Gengbo
    Rajput, Kuldeep Singh
    Selvaraj, Nandakumar
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 4986 - 4991
  • [10] A MACHINE LEARNING-BASED TOURIST PATH PREDICTION
    Zheng, Siwen
    Liu, Yu
    Ouyang, Zhenchao
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 38 - 42