Atomistic Study of the Long-Lived Quantum Coherences in the Fenna-Matthews-Olson Complex

被引:193
作者
Shim, Sangwoo [1 ]
Rebentrost, Patrick [1 ]
Valleau, Stephanie [1 ]
Aspuru-Guzik, Alan [1 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
LIGHT-HARVESTING SYSTEM; SINGLE-POINT MUTATION; ENERGY-TRANSFER; PROSTHECOCHLORIS-AESTUARII; 8TH BACTERIOCHLOROPHYLL; EXCITATION TRANSFER; MOLECULAR-DYNAMICS; EXCITON DYNAMICS; FMO COMPLEX; FORCE-FIELD;
D O I
10.1016/j.bpj.2011.12.021
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
A remarkable amount of theoretical research has been carried out to elucidate the physical origins of the recently observed long-lived quantum coherence in the electronic energy transfer process in biological photosynthetic systems. Although successful in many respects, several widely used descriptions only include an effective treatment of the protein-chromophore interactions. In this work, by combining an all-atom molecular dynamics simulation, time-dependent density functional theory, and open quantum system approaches, we successfully simulate the dynamics of the electronic energy transfer of the Fenna-Matthews-Olson pigment-protein complex. The resulting characteristic beating of populations and quantum coherences is in good agreement with the experimental results and the hierarchy equation of motion approach. The experimental absorption, linear, and circular dichroism spectra and dephasing rates are recovered at two different temperatures. In addition, we provide an extension of our method to include zero-point fluctuations of the vibrational environment. This work thus presents, to our knowledge, one of the first steps to explain the role of excitonic quantum coherence in photosynthetic light-harvesting complexes based on their atomistic and molecular description.
引用
收藏
页码:649 / 660
页数:12
相关论文
共 62 条
[1]   Exciton dynamics in chromophore aggregates with correlated environment fluctuations [J].
Abramavicius, Darius ;
Mukamel, Shaul .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (17)
[2]   How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria [J].
Adolphs, Julia ;
Renger, Thomas .
BIOPHYSICAL JOURNAL, 2006, 91 (08) :2778-2797
[3]  
[Anonymous], 2004, CHARGE ENERGY TRANSF
[4]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[5]   The Eighth Bacteriochlorophyll Completes the Excitation Energy Funnel in the FMO Protein [J].
Busch, Marcel Schmidt Am ;
Mueh, Frank ;
Madjet, Mohamed El-Amine ;
Renger, Thomas .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (02) :93-98
[6]   Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of noise-assisted transport [J].
Caruso, F. ;
Chin, A. W. ;
Datta, A. ;
Huelga, S. F. ;
Plenio, M. B. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (10)
[7]   Entanglement and entangling power of the dynamics in light-harvesting complexes [J].
Caruso, Filippo ;
Chin, Alex W. ;
Datta, Animesh ;
Huelga, Susana F. ;
Plenio, Martin B. .
PHYSICAL REVIEW A, 2010, 81 (06)
[8]   An ab initio force field for the cofactors of bacterial photosynthesis [J].
Ceccarelli, M ;
Procacci, P ;
Marchi, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2003, 24 (02) :129-142
[9]   Exciton analysis in 2D electronic spectroscopy [J].
Cho, MH ;
Vaswani, HM ;
Brixner, T ;
Stenger, J ;
Fleming, GR .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (21) :10542-10556
[10]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197