Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries

被引:198
作者
Tu, Zhengyuan [1 ]
Nath, Pooja [2 ]
Lu, Yingying [4 ]
Tikekar, Mukul D. [3 ]
Archer, Lynden A. [1 ,2 ]
机构
[1] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
[3] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
[4] Zhejiang Univ, Coll Chem & Biol Engn, Hangzhou 310027, Zhejiang, Peoples R China
基金
美国国家科学基金会;
关键词
NANOPARTICLE HYBRID ELECTROLYTES; MORPHOLOGICAL INSTABILITY; LIQUID; DEPOSITION; STABILITY; HYDROGEN; GROWTH;
D O I
10.1021/acs.accounts.5b00427
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Secondary batteries based on lithium are the most important energy storage technology for contemporary portable devices. The lithium ion battery (LIB) in widespread commercial use today is a compromise technology. It compromises high energy, high power, and design flexibility for long cell operating lifetimes and safety. Materials science, transport phenomena, and electrochemistry in the electrodes and electrolyte that constitute such batteries are areas of active study worldwide because significant improvements in storage capacity and cell lifetime are required to meet new demands, including the electrification of transportation and for powering emerging autonomous aircraft and robotics technologies. By replacing the carbonaceous host material used as the anode in an LIB with metallic lithium, rechargeable lithium metal batteries (LMBs) with higher storage capacity and compatibility with low-cost, high-energy, unlithiated cathodes such as sulfur, manganese dioxide, carbon dioxide, and oxygen become possible. Large-scale, commercial deployment of LMBs are today limited by safety concerns associated with unstable electrodeposition and lithium dendrite formation during cell recharge. LMBs are also limited by low cell operating lifetimes due to parasitic chemical reactions between the electrode and electrolyte. These concerns are greater in rechargeable batteries that utilize other, more earth abundant metals such as sodium and to some extent even aluminum. Inspired by early theoretical works, various strategies have been proposed for alleviating dendrite proliferation in LMBs. A commonly held view among these early studies is that a high modulus, solid-state electrolyte that facilitates fast ion transport, is nonflammable, and presents a strong-enough physical barrier to dendrite growth is a requirement for any commercial LMB. Unfortunately, poor room-temperature ionic conductivity, challenging processing, and the high cost of ceramic electrolytes that meet the modulus and stability requirements have to date proven to be insurmountable obstacles to progress. In this Account, we first review recent advances in continuum theory for dendrite growth and proliferation during metal electrodeposition. We show that the range of options for designing electrolytes and separators that stabilize electrodeposition is now substantially broader than one might imagine from previous literature accounts. In particular, separators designed at the nanoscale to constrain ion transport on length scales below a theory-defined cutoff, and structured electrolytes in which a fraction of anions are permanently immobilized to nanoparticles, to a polymer network or ceramic membrane are considered particularly promising for their ability to stabilize electrodeposition of lithium metal without compromising ionic conductivity or room temperature battery operation. We also review recent progress in designing surface passivation films for metallic lithium that facilitate fast deposition of lithium at the electrolyte/electrode interface and at the same time protect the lithium from parasitic side reactions with liquid electrolytes. A promising finding from both theory and experiment is that simple film-forming halide salt additives in a conventional liquid electrolyte can substantially extend the lifetime and safety of LMBs.
引用
收藏
页码:2947 / 2956
页数:10
相关论文
共 47 条
[1]   Electrodeposited Ni dendrites with high activity and durability for hydrogen evolution reaction in alkaline water electrolysis [J].
Ahn, Sang Hyun ;
Hwang, Seung Jun ;
Yoo, Sung Jong ;
Choi, Insoo ;
Kim, Hyoung-Juhn ;
Jang, Jong Hyun ;
Nam, Suk Woo ;
Lim, Tae-Hoon ;
Lim, Taeho ;
Kim, Soo-Kil ;
Kim, Jae Jeong .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (30) :15153-15159
[2]  
[Anonymous], 2010, ANGEW CHEM, DOI DOI 10.1002/ANGE.201004551
[3]   THEORY OF POWDERED METAL FORMATION IN ELECTROCHEMISTRY - MORPHOLOGICAL INSTABILITY IN GALVANOSTATIC CRYSTAL-GROWTH UNDER DIFFUSION CONTROL [J].
AOGAKI, R ;
MAKINO, T .
ELECTROCHIMICA ACTA, 1981, 26 (11) :1509-1517
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[6]   Review on electrode-electrolyte solution interactions, related to cathode materials for Li-ion batteries [J].
Aurbach, Doron ;
Markovsky, Boris ;
Salitra, Gregory ;
Markevich, Elena ;
Talyossef, Yossi ;
Koltypin, Maxim ;
Nazar, Linda ;
Ellis, Brian ;
Kovacheva, Daniella .
JOURNAL OF POWER SOURCES, 2007, 165 (02) :491-499
[7]   Energy storage beyond the horizon: Rechargeable lithium batteries [J].
Bruce, Peter G. .
SOLID STATE IONICS, 2008, 179 (21-26) :752-760
[8]   High performance of lithium-ion polymer battery based on non-aqueous lithiated perfluorinated sulfonic ion-exchange membranes [J].
Cai, Zhijun ;
Liu, Yanbo ;
Liu, Sisi ;
Li, Lei ;
Zhang, Yongming .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (02) :5690-5693
[9]   ELECTROCHEMICAL ASPECTS OF THE GENERATION OF RAMIFIED METALLIC ELECTRODEPOSITS [J].
CHAZALVIEL, JN .
PHYSICAL REVIEW A, 1990, 42 (12) :7355-7367
[10]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456