Nonconvex Differential Variational Inequality and State-Dependent Sweeping Process

被引:10
作者
Haddad, Tahar [1 ]
机构
[1] Univ Jijel, Fac Sci & Informat, Lab Math Pures & Appl, Jijel 18000, Algeria
关键词
Differential variational inequality; Projection algorithm; Prox-regular sets; Normal cones; MODEL;
D O I
10.1007/s10957-013-0353-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We prove the existence of solutions of a differential variational inequality involving a prox-regular set in an infinite dimensional Hilbert space via a new existence result of a non-convex state-dependent sweeping process.
引用
收藏
页码:386 / 398
页数:13
相关论文
共 18 条
  • [1] [Anonymous], 1977, LECT NOTES MATH
  • [2] Well-posedness and approximation for a one-dimensional model for shape memory alloys
    Auricchio, F
    Stefanelli, U
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (09) : 1301 - 1327
  • [3] Numerical analysis of a three-dimensional super-elastic constitutive model
    Auricchio, F
    Stefanelli, U
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 61 (01) : 142 - 155
  • [4] Bounkhel M., 2011, SET-VALUED ANAL, V3, P200
  • [5] Bounkhel M., 2011, REGULARITY CONCEPTS
  • [6] Bounkhel M., 2004, J NONLINEAR CONVEX A, V3, P331
  • [7] Bounkhel M, 2005, J NONLINEAR CONVEX A, V6, P359
  • [8] Castaing C, 2009, J NONLINEAR CONVEX A, V10, P1
  • [9] Castaing C., 1993, Set-Valued Analysis, V1, P109, DOI [10.1007/BF01027688, DOI 10.1007/BF01027688]
  • [10] Non-convex quasi-variational differential inclusions
    Chemetov, N.
    Monteiro Marques, M. D. P.
    [J]. SET-VALUED ANALYSIS, 2007, 15 (03): : 209 - 221