Piecewise Deterministic Markov Processes in Biological Models

被引:14
|
作者
Rudnicki, Ryszard [1 ]
Tyran-Kaminska, Marta [2 ]
机构
[1] Polish Acad Sci, Inst Math, PL-40007 Katowice, Poland
[2] Univ Silesia, Inst Math, PL-40007 Katowice, Poland
来源
SEMIGROUPS OF OPERATORS - THEORY AND APPLICATIONS | 2015年 / 113卷
关键词
NEURONAL VARIABILITY; GENE-EXPRESSION; SEMIGROUPS; SYSTEMS; DENSITIES; STABILITY; EVOLUTION; FAMILIES;
D O I
10.1007/978-3-319-12145-1_15
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a short introduction into the framework of piecewise deterministic Markov processes. We illustrate the abstract mathematical setting with a series of examples related to dispersal of biological systems, cell cycle models, gene expression, physiologically structured populations, as well as neural activity. General results concerning asymptotic properties of stochastic semigroups induced by such Markov processes are applied to specific examples.
引用
收藏
页码:235 / 255
页数:21
相关论文
共 50 条
  • [21] Optimal control of a class of piecewise deterministic processes
    Annunziato, M.
    Borzi, A.
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2014, 25 : 1 - 25
  • [22] Ergodic properties of some piecewise-deterministic Markov process with application to gene expression modelling
    Czapla, Dawid
    Horbacz, Katarzyna
    Wojewodka-Sciazko, Hanna
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (05) : 2851 - 2885
  • [23] A multiscale stochastic criminal behavior model and the convergence to a piecewise-deterministic-Markov-process limit
    Cai, Yiru
    Wang, Chuntian
    Zhang, Yuan
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (04) : 619 - 645
  • [24] Counting Processes With Piecewise-Deterministic Markov Conditional Intensity: Asymptotic Analysis, Implementation, and Information-Theoretic Use
    Sinzger-D'Angelo, Mark
    Koeppl, Heinz
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (11) : 6822 - 6856
  • [25] CONVERGENCE OF STOCHASTIC GENE NETWORKS TO HYBRID PIECEWISE DETERMINISTIC PROCESSES
    Crudu, A.
    Debussche, A.
    Muller, A.
    Radulescu, O.
    ANNALS OF APPLIED PROBABILITY, 2012, 22 (05) : 1822 - 1859
  • [26] Bisimulations for non-deterministic labelled Markov processes
    D'Argenio, Pedro R.
    Sanchez Terraf, Pedro
    Wolovick, Nicolas
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2012, 22 (01) : 43 - 68
  • [27] A PIECEWISE DETERMINISTIC MARKOV PROCESS APPROACH MODELING A DRY FRICTION PROBLEM WITH NOISE
    Garnier, Josselin
    Lu, Ziyu
    Mertz, Laurent
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2023, 83 (04) : 1392 - 1421
  • [28] Controllability Issues for Randomly Switching Piecewise Linear Markov Processes
    Goreac, Dan
    IFAC PAPERSONLINE, 2017, 50 (01): : 3871 - 3876
  • [29] On the Continuous Dependence of the Stationary Distribution of a Piecewise Deterministic Markov Process on its Jump Intensity
    Czapla, Dawid
    Hille, Sander C.
    Horbacz, Katarzyna
    Wojewodka-Sciazko, Hanna
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [30] Continuous dependence of an invariant measure on the jump rate of a piecewise-deterministic Markov process
    Czapla, Dawid
    Hille, Sander C.
    Horbacz, Katarzyna
    Wojewodka-Sciazko, Hanna
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2020, 17 (02) : 1059 - 1073