Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species

被引:86
作者
Stein-O'Brien, Genevieve L. [1 ,2 ,6 ,7 ]
Clark, Brian S. [2 ,16 ]
Sherman, Thomas [1 ]
Zibetti, Cristina [2 ]
Hu, Qiwen [14 ]
Sealfon, Rachel [15 ]
Liu, Sheng [5 ]
Qian, Jiang [5 ]
Colantuoni, Carlo [2 ,4 ]
Blackshaw, Seth [2 ,3 ,4 ,5 ,10 ]
Goff, Loyal A. [2 ,3 ,6 ]
Fertig, Elana J. [1 ,6 ,7 ,8 ,9 ,11 ,12 ,13 ]
机构
[1] Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Dept Oncol, Div Biostat & Bioinformat, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Solomon H Snyder Dept Neurosci, Baltimore, MD USA
[3] Johns Hopkins Univ, Kavli Neurodiscovery Inst, Baltimore, MD USA
[4] Johns Hopkins Univ, Dept Neurol, Baltimore, MD 21218 USA
[5] Johns Hopkins Univ, Dept Ophthalmol, Baltimore, MD USA
[6] Johns Hopkins Univ, McKusick Nathans Inst Genet Med, Baltimore, MD 21218 USA
[7] Johns Hopkins Univ, Inst Data Intens Engn & Sci, Baltimore, MD 21218 USA
[8] Johns Hopkins Univ, Inst Computat Med, Baltimore, MD 21218 USA
[9] Johns Hopkins Univ, Math Inst Data Sci, Baltimore, MD 21218 USA
[10] Johns Hopkins Univ, Ctr Human Syst Biol, Baltimore, MD USA
[11] Johns Hopkins Univ, Inst Cell Engn, Baltimore, MD 21218 USA
[12] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[13] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
[14] Univ Penn, Dept Syst Pharmacol & Translat Therapeut, Philadelphia, PA 19104 USA
[15] Flatiron Inst, New York, NY USA
[16] Washington Univ, Dept Ophthalmol & Visual Sci, St Louis, MO 63130 USA
关键词
GENE-EXPRESSION; READ ALIGNMENT; RETINA; MOUSE;
D O I
10.1016/j.cels.2019.04.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Analysis of gene expression in single cells allows for decomposition of cellular states as low-dimensional latent spaces. However, the interpretation and validation of these spaces remains a challenge. Here, we present scCoGAPS, which defines latent spaces from a source single-cell RNA-sequencing (scRNA-seq) dataset, and projectR, which evaluates these latent spaces in independent target datasets via transfer learning. Application of developing mouse retina to scRNA-Seq reveals intrinsic relationships across biological contexts and assays while avoiding batch effects and other technical features. We compare the dimensions learned in this source dataset to adult mouse retina, a time-course of human retinal development, select scRNA-seq datasets from developing brain, chromatin accessibility data, and a murine-cell type atlas to identify shared biological features. These tools lay the groundwork for exploratory analysis of scRNA-seq data via latent space representations, enabling a shift in how we compare and identify cells beyond reliance on marker genes or ensemble molecular identity.
引用
收藏
页码:395 / +
页数:25
相关论文
共 75 条
[1]   Cell fate determination in the vertebrate retina [J].
Bassett, Erin A. ;
Wallace, Valerie A. .
TRENDS IN NEUROSCIENCES, 2012, 35 (09) :565-573
[2]   Dimensionality reduction for visualizing single-cell data using UMAP [J].
Becht, Etienne ;
McInnes, Leland ;
Healy, John ;
Dutertre, Charles-Antoine ;
Kwok, Immanuel W. H. ;
Ng, Lai Guan ;
Ginhoux, Florent ;
Newell, Evan W. .
NATURE BIOTECHNOLOGY, 2019, 37 (01) :38-+
[3]   ClutrFree: cluster tree visualization and interpretation [J].
Bidaut, G ;
Ochs, MF .
BIOINFORMATICS, 2004, 20 (16) :2869-2871
[4]   Genomic analysis of mouse retinal development [J].
Blackshaw, S ;
Harpavat, S ;
Trimarchi, J ;
Cai, L ;
Huang, HY ;
Kuo, WP ;
Weber, G ;
Lee, K ;
Fraioli, RE ;
Cho, SH ;
Yung, R ;
Asch, E ;
Ohno-Machado, L ;
Wong, WH ;
Cepko, CL .
PLOS BIOLOGY, 2004, 2 (09) :1411-1431
[5]   Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes [J].
Blackshaw, S ;
Fraioli, RE ;
Furukawa, T ;
Cepko, CL .
CELL, 2001, 107 (05) :579-589
[6]   Metagenes and molecular pattern discovery using matrix factorization [J].
Brunet, JP ;
Tamayo, P ;
Golub, TR ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) :4164-4169
[7]  
Buenrostro JD, 2013, NAT METHODS, V10, P1213, DOI [10.1038/NMETH.2688, 10.1038/nmeth.2688]
[8]  
Butler A., 2017, bioRxiv
[9]   Power analysis and sample size estimation for RNA-Seq differential expression [J].
Ching, Travers ;
Huang, Sijia ;
Garmire, Lana X. .
RNA, 2014, 20 (11) :1684-1696
[10]   Generalizable and Scalable Visualization of Single-Cell Data Using Neural Networks [J].
Cho, Hyunghoon ;
Berger, Bonnie ;
Peng, Jian .
CELL SYSTEMS, 2018, 7 (02) :185-+