Global Existence and Blowing Up of Solutions for Some Non-linear Wave Equations

被引:1
作者
Xiao, Wei [1 ]
机构
[1] ChangAn Univ, Sch Sci, Xian 710064, Peoples R China
关键词
Global solutions; Blow up; Nehari manifold; Mountain pass level; POSITIVE INITIAL ENERGY; HYPERBOLIC-EQUATIONS; EVOLUTION-EQUATIONS; SOURCE TERMS; NONEXISTENCE THEOREMS; DISSIPATION; SYSTEM;
D O I
10.1007/s40840-016-0339-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, an initial boundary value problem for a system of semi-linear hyperbolic equations with damped term in a bounded domain is considered. We prove the global existence, uniquenes, blow up of solutions and give some estimates for the lifespan of solutions.
引用
收藏
页码:117 / 133
页数:17
相关论文
共 31 条
[21]  
Nehari Z., 1960, Trans. Am. Math. Soc, V95, P101, DOI DOI 10.1090/S0002-9947-1960-0111898-8
[22]   Asymptotic behavior of solutions of quasilinear hyperbolic equations with linear damping [J].
Nishihara, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 137 (02) :384-395
[23]  
Ohta M., 1998, Adv. Math. Sci. Appl., V8, P901
[24]   Global nonexistence for abstract evolution equations with positive initial energy [J].
Pucci, P ;
Serrin, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 150 (01) :203-214
[25]  
SATTINGER DH, 1968, ARCH RATION MECH AN, V30, P148
[26]   NON-LINEAR SEMI-GROUPS [J].
SEGAL, I .
ANNALS OF MATHEMATICS, 1963, 78 (02) :339-&
[27]   Global and blow-up solutions for a system of nonlinear hyperbolic equations with dissipative terms [J].
Sun, FQ ;
Wang, MX .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (04) :739-761
[28]   Global nonexistence theorems for a class of evolution equations with dissipation [J].
Vitillaro, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 149 (02) :155-182
[29]  
Willem M., 1996, MINIMAX THEOREMS, V24
[30]   Global existence and nonexistence for a nonlinear wave equation with damping and source terms [J].
Zhou, Y .
MATHEMATISCHE NACHRICHTEN, 2005, 278 (11) :1341-1358