Global Existence and Blowing Up of Solutions for Some Non-linear Wave Equations

被引:1
作者
Xiao, Wei [1 ]
机构
[1] ChangAn Univ, Sch Sci, Xian 710064, Peoples R China
关键词
Global solutions; Blow up; Nehari manifold; Mountain pass level; POSITIVE INITIAL ENERGY; HYPERBOLIC-EQUATIONS; EVOLUTION-EQUATIONS; SOURCE TERMS; NONEXISTENCE THEOREMS; DISSIPATION; SYSTEM;
D O I
10.1007/s40840-016-0339-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, an initial boundary value problem for a system of semi-linear hyperbolic equations with damped term in a bounded domain is considered. We prove the global existence, uniquenes, blow up of solutions and give some estimates for the lifespan of solutions.
引用
收藏
页码:117 / 133
页数:17
相关论文
共 31 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   Local well posedness for strongly damped wave equations with critical nonlinearities [J].
Carvalho, AN ;
Cholewa, JW .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 66 (03) :443-463
[3]   UNIFORM ESTIMATES FOR SOLUTIONS OF NONLINEAR KLEIN-GORDON EQUATIONS [J].
CAZENAVE, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1985, 60 (01) :36-55
[4]   Global nonexistence for a semilinear Petrovsky equation [J].
Chen, Wenying ;
Zhou, Yong .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (09) :3203-3208
[5]   Qualitative analysis of a nonlinear wave equation [J].
Esquivel-Avila, JA .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2004, 10 (03) :787-804
[6]   The dynamics of a nonlinear wave equation [J].
Esquivel-Avila, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 279 (01) :135-150
[7]   Global solutions and finite time blow up for damped semilinear wave equations [J].
Gazzola, F ;
Squassina, M .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (02) :185-207
[8]  
Gazzola F, 2004, DIFFER INTEGRAL EQU, V17, P983
[9]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308
[10]  
Ikehata R., 1996, HIROSHIMA MATH J, V26, P475, DOI DOI 10.32917/HMJ/1206127254