Different Root Anatomical Changes in Salt-tolerant and Salt-sensitive Foxtail Millet Genotypes

被引:3
|
作者
Karjunita, Nike [1 ]
Khumaida, Nurul [2 ]
Ardie, Sintho Wahyuning [2 ]
机构
[1] Bogor Agr Univ, Grad Sch Plant Breeding & Biotechnol, Java, Indonesia
[2] Bogor Agr Univ, Fac Agr, Dept Agron & Hort, Java, Indonesia
来源
AGRIVITA | 2019年 / 41卷 / 01期
关键词
Abiotic stress; Protoxylem; Root hair; Setaria italica L. Beauv; Tolerance mechanism; SETARIA-ITALICA L; SALINITY TOLERANCE; GROWTH; STRESS; PLASTICITY;
D O I
10.17503/agrivita.v41i1.1786
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Foxtail millet is relatively tolerant to salinity stress and thus can be grown in salinity affected areas. This study was conducted to identify anatomical changes in the roots of foxtail millet genotypes with different tolerance level to salt stress. Four foxtail millet genotypes, namely ICERI-5 and ICERI-6 (salt-tolerant) and ICERI-4 and ICERI-10 (saltsensitive), were grown hydroponically for 1 week prior to 60 and 120 mM salt stress treatments. Root anatomical changes were observed on the fifth day after treatments. The results showed that salt stress significantly induced some anatomical changes in the roots of foxtail millet, i.e. increased epidermis and cortex thickness, increased root diameter, and increased number of root hairs. The increase in epidermis thickness, root diameter and number of root hairs due to the salt application were more pronounced in the sensitive genotypes. Number of protoxylem in the tolerant genotypes significantly increased due to salt stress, however salinity significantly decreased the number of protoxylem among the sensitive genotypes. The different anatomical changes under salt stress between the tolerant- and sensitive genotypes indicated that some anatomical attributes of the roots might determine the salt tolerance level of foxtail millet.
引用
收藏
页码:88 / 96
页数:9
相关论文
共 50 条
  • [31] Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.)
    M. Ashraf
    M. Rahmatullah
    R. Afzal
    F. Ahmed
    A. Mujeeb
    L. Sarwar
    Plant and Soil, 2010, 326 : 381 - 391
  • [32] Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.)
    Ashraf, M.
    Rahmatullah
    Afzal, M.
    Ahmed, R.
    Mujeeb, F.
    Sarwar, A.
    Ali, L.
    PLANT AND SOIL, 2010, 326 (1-2) : 381 - 391
  • [33] Proline status in salt-tolerant and salt-sensitive alfalfa cell lines and plants in response to NaCl
    Petrusa, LM
    Winicov, I
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 1997, 35 (04) : 303 - 310
  • [34] The influence of host genotype and salt stress on the seed endophytic community of salt-sensitive and salt-tolerant rice cultivars
    Walitang, Denver I.
    Kim, Chang-Gi
    Kim, Kiyoon
    Kang, Yeongyeong
    Kim, Young Kee
    Sa, Tongmin
    BMC PLANT BIOLOGY, 2018, 18
  • [35] Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea
    Prerostova, Sylva
    Dobrev, Petre I.
    Gaudinova, Alena
    Hosek, Petr
    Soudek, Petr
    Knirsch, Vojtech
    Vankova, Radomira
    PLANT SCIENCE, 2017, 264 : 188 - 198
  • [36] DISTRIBUTION OF CATIONS IN LEAVES OF SALT-TOLERANT AND SALT-SENSITIVE LINES OF SUNFLOWER UNDER SALINE CONDITIONS
    ASHRAF, M
    OLEARY, JW
    JOURNAL OF PLANT NUTRITION, 1995, 18 (11) : 2379 - 2388
  • [37] Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance
    Mingquan Wang
    Yufeng Wang
    Yifei Zhang
    Chunxia Li
    Shichen Gong
    Shuqin Yan
    Guoliang Li
    Guanghui Hu
    Honglei Ren
    Jianfei Yang
    Tao Yu
    Kejun Yang
    Genes & Genomics, 2019, 41 : 781 - 801
  • [38] Comparative transcriptome analysis of salt-sensitive and salt-tolerant maize reveals potential mechanisms to enhance salt resistance
    Wang, Mingquan
    Wang, Yufeng
    Zhang, Yifei
    Li, Chunxia
    Gong, Shichen
    Yan, Shuqin
    Li, Guoliang
    Hu, Guanghui
    Ren, Honglei
    Yang, Jianfei
    Yu, Tao
    Yang, Kejun
    GENES & GENOMICS, 2019, 41 (07) : 781 - 801
  • [39] Comparative Proteomics of Salt-Tolerant and Salt-Sensitive Maize Inbred Lines to Reveal the Molecular Mechanism of Salt Tolerance
    Chen, Fenqi
    Fang, Peng
    Peng, Yunling
    Zeng, Wenjing
    Zhao, Xiaoqiang
    Ding, Yongfu
    Zhuang, Zelong
    Gao, Qiaohong
    Ren, Bin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (19)
  • [40] Differential Regulation of NAPDH Oxidases in Salt-Tolerant Eutrema salsugineum and Salt-Sensitive Arabidopsis thaliana
    Pilarska, Maria
    Bartels, Dorothea
    Niewiadomska, Ewa
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)