Finite-element-based discretizations of the incompressible Navier-Stokes equations with multiplicative random forcing

被引:55
|
作者
Brzezniak, Zdzislaw [1 ]
Carelli, Erich [2 ]
Prohl, Andreas [2 ]
机构
[1] Univ York, Dept Math, York YO10 5DD, N Yorkshire, England
[2] Univ Tubingen, Math Inst, D-72076 Tubingen, Germany
关键词
Stochastic Navier-Stokes; finite elements; implicit Euler method; non-Lipschitz drift; multiplicative noise approximation of martingale solutions; CONVERGENCE; SCHEME;
D O I
10.1093/imanum/drs032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study finite-element-based space-time discretizations of the incompressible Navier-Stokes equations with noise. In three dimensions, sequences of numerical solutions construct weak martingale solutions for vanishing discretization parameters. In the two-dimensional case, numerical solutions converge to the unique strong solution.
引用
收藏
页码:771 / 824
页数:54
相关论文
共 50 条
  • [1] Reduced finite element discretizations of the Stokes and Navier-stokes equations
    Knobloch, P
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2006, 27 (02) : 161 - 187
  • [2] Incompressible finite element methods for the Navier-Stokes equations
    Raviart, P. A.
    ADVANCES IN WATER RESOURCES, 1982, 5 (01) : 2 - 8
  • [3] A Multiscale Finite Element Formulation for the Incompressible Navier-Stokes Equations
    Baptista, Riedson
    Bento, Sergio S.
    Santos, Isaac P.
    Lima, Leonardo M.
    Valli, Andrea M. P.
    Catabriga, Lucia
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS (ICCSA 2018), PT II, 2018, 10961 : 253 - 267
  • [4] Algebraic multigrid for stabilized finite element discretizations of the Navier-Stokes equations
    Okusanya, T
    Darmofal, DL
    Peraire, J
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2004, 193 (33-35) : 3667 - 3686
  • [5] FINITE-ELEMENT MODELING OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    UTNES, T
    REN, G
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 1995, 4 (1-2) : 41 - 55
  • [6] Error estimates for finite element discretizations of the instationary Navier-Stokes equations
    Vexler, Boris
    Wagner, Jakob
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2024, 58 (02) : 457 - 488
  • [7] A multiscale finite element method for the incompressible Navier-Stokes equations
    Masud, A
    Khurram, RA
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (13-16) : 1750 - 1777
  • [8] Discretizations for the incompressible Navier-Stokes equations based on the lattice Boltzmann method
    Junk, M
    Klar, A
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (01): : 1 - 19
  • [9] Efficient discretizations for the EMAC formulation of the incompressible Navier-Stokes equations
    Charnyi, Sergey
    Heister, Timo
    Olshanskii, Maxim A.
    Rebholz, Leo G.
    APPLIED NUMERICAL MATHEMATICS, 2019, 141 : 220 - 233
  • [10] RATES OF CONVERGENCE FOR DISCRETIZATIONS OF THE STOCHASTIC INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Carelli, Erich
    Prohl, Andreas
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (05) : 2467 - 2496