High capacity SnxSbyCuz composite anodes for lithium ion batteries

被引:12
|
作者
Nithya, C. [1 ,2 ]
Sowmiya, T. [1 ]
Baskar, K. Vijaya [1 ]
Selvaganeshan, N. [1 ]
Kalaiyarasi, T. [3 ]
Gopukumar, S. [1 ]
机构
[1] CSIR, Cent Electrochem Res Inst, Karaikkudi 630006, Tamil Nadu, India
[2] Natl Inst Technol, Ctr Energy & Environm Sci & Technol CEESAT, Tiruchirappalli 620015, India
[3] PSGR Krishnammal Coll Women, Coimbatore 641004, Tamil Nadu, India
关键词
Composite anodes; Mechanical milling method; Volume expansion; Intercalation; Active/inactive matrix effect; LOW-TEMPERATURE PERFORMANCE; ALLOYED SN-FE(-C) POWDERS; ELECTROCHEMICAL PERFORMANCE; SN; ELECTRODE; PARTICLES; INSERTION; BEHAVIOR; TIN;
D O I
10.1016/j.solidstatesciences.2013.02.020
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
To increase the volumetric discharge capacity of negative electrode for rechargeable lithium batteries, a composite anode SnxSbyCuz has been synthesized by using high energy mechanical ball milling method. The synthesized composite anode materials have been characterized by X-ray diffraction and SEM analysis. The charge/discharge characteristics of the fabricated coin cells have been evaluated galvanostatically in the potential range 0.01-2 V using 1 M LiPF6 in 1:1 EC/DEC as electrolyte. Results indicate that the composition with 90 wt% Sn, 8 wt% Sb and 2 wt% Cu delivers an average discharge capacity of 740 mAh g(-1) over the investigated 50 cycles which is a potential candidate for use as an anode material for lithium rechargeable cells. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:144 / 149
页数:6
相关论文
共 50 条
  • [41] Superior Capacity Retention Sn-Ni-Fe-C Composite Anodes for Lithium-Ion Batteries
    Yoon, Sukeun
    Manthiram, Arumugam
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (09) : A190 - A193
  • [42] Improving Anodes for Lithium Ion Batteries
    Gerard K. Simon
    Tarun Goswami
    Metallurgical and Materials Transactions A, 2011, 42 : 231 - 238
  • [43] Improving Anodes for Lithium Ion Batteries
    Simon, Gerard K.
    Goswami, Tarun
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2011, 42A (01): : 231 - 238
  • [44] Hollandite anodes for lithium ion batteries
    Barbato, S
    Restovic, A
    Ortiz, J
    Gautier, JL
    BOLETIN DE LA SOCIEDAD CHILENA DE QUIMICA, 1999, 44 (02): : 209 - 216
  • [45] Morphosynthesis of SnO2 nanocrystal networks as high-capacity anodes for lithium ion batteries
    Xiaolei Sun
    Ionics, 2020, 26 : 3841 - 3851
  • [46] Morphosynthesis of SnO2 nanocrystal networks as high-capacity anodes for lithium ion batteries
    Sun, Xiaolei
    IONICS, 2020, 26 (08) : 3841 - 3851
  • [47] Toward pre-lithiatied high areal capacity silicon anodes for Lithium-ion batteries
    Marinaro, Mario
    Weinberger, Manuel
    Wohlfahrt-Mehrens, Margret
    ELECTROCHIMICA ACTA, 2016, 206 : 99 - 107
  • [48] Alloying Reaction Confinement Enables High-Capacity and Stable Anodes for Lithium-Ion Batteries
    Fang, Shan
    Shen, Laifa
    Li, Shaopeng
    Kim, Guk-Tae
    Bresser, Dominic
    Zhang, Haiqian
    Zhang, Xiaogang
    Maier, Joachim
    Passerini, Stefano
    ACS NANO, 2019, 13 (08) : 9511 - 9519
  • [49] HIGH-CAPACITY CARBONS PREPARED FROM PHENOLIC RESIN FOR ANODES OF LITHIUM-ION BATTERIES
    ZHENG, T
    ZHONG, Q
    DAHN, JR
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (11) : L211 - L214
  • [50] Silicon and porous MWCNT composite as high capacity anode for lithium-ion batteries
    Nulu, Arunakumari
    Nulu, Venugopal
    Sohn, Keun Yong
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 37 (10) : 1795 - 1802