Weakly Supervised Localization Using Deep Feature Maps

被引:33
作者
Bency, Archith John [1 ]
Kwon, Heesung [2 ]
Lee, Hyungtae [2 ,3 ]
Karthikeyan, S. [1 ]
Manjunath, B. S. [1 ]
机构
[1] Univ Calif Santa Barbara, Santa Barbara, CA 93106 USA
[2] Army Res Lab, Adelphi, MD USA
[3] Booz Allen Hamilton Inc, Mclean, VA USA
来源
COMPUTER VISION - ECCV 2016, PT I | 2016年 / 9905卷
关键词
Weakly supervised methods; Object localization; Deep convolutional networks; OBJECT LOCALIZATION;
D O I
10.1007/978-3-319-46448-0_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object localization is an important computer vision problem with a variety of applications. The lack of large scale object-level annotations and the relative abundance of image-level labels makes a compelling case for weak supervision in the object localization task. Deep Convolutional Neural Networks are a class of state-of-the-art methods for the related problem of object recognition. In this paper, we describe a novel object localization algorithm which uses classification networks trained on only image labels. This weakly supervised method leverages local spatial and semantic patterns captured in the convolutional layers of classification networks. We propose an efficient beam search based approach to detect and localize multiple objects in images. The proposed method significantly outperforms the state-of-the-art in standard object localization data-sets.
引用
收藏
页码:714 / 731
页数:18
相关论文
共 51 条
  • [1] Measuring the Objectness of Image Windows
    Alexe, Bogdan
    Deselaers, Thomas
    Ferrari, Vittorio
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) : 2189 - 2202
  • [2] [Anonymous], 2015, PROC CVPR IEEE, DOI 10.1109/CVPR.2015.7298642
  • [3] [Anonymous], 2015, 2015 IEEE INT C COMP
  • [4] Bilen H, 2015, PROC CVPR IEEE, P1081, DOI 10.1109/CVPR.2015.7298711
  • [5] Blaschko M., 2010, NEURAL INFORM PROCES, P235
  • [6] Brox T., 2011, 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), P2225, DOI 10.1109/CVPR.2011.5995659
  • [7] The devil is in the details: an evaluation of recent feature encoding methods
    Chatfield, Ken
    Lempitsky, Victor
    Vedaldi, Andrea
    Zisserman, Andrew
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
  • [8] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [9] Chum O., 2007, 2007 IEEE C COMPUTER, P1
  • [10] Multi-fold MIL Training for Weakly Supervised Object Localization
    Cinbis, Ramazan Gokberk
    Verbeek, Jakob
    Schmid, Cordelia
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 2409 - 2416