Plane shock loading on mono- and nano-crystalline silicon carbide

被引:22
作者
Branicio, Paulo S. [1 ,2 ,3 ,4 ]
Zhang, Jingyun [5 ,6 ]
Rino, Jose P. [7 ]
Nakano, Aiichiro [2 ,3 ,4 ]
Kalia, Rajiv K. [2 ,3 ,4 ]
Vashishta, Priya [2 ,3 ,4 ]
机构
[1] Univ Southern Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, Collaboratory Adv Comp & Simulat, Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
[3] Univ Southern Calif, Collaboratory Adv Comp & Simulat, Dept Phys & Astron, Los Angeles, CA 90089 USA
[4] Univ Southern Calif, Collaboratory Adv Comp & Simulat, Dept Comp Sci, Los Angeles, CA 90089 USA
[5] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Optoelect Detect Atmosphere & Oce, Nanjing 210044, Jiangsu, Peoples R China
[6] Nanjing Univ Informat Sci & Technol, Sch Phys & Optoelect Engn, Nanjing 210044, Jiangsu, Peoples R China
[7] Univ Fed Sao Carlos, Dept Phys, Rodovia Washington Luis,Km 235, Sao Carlos, SP, Brazil
关键词
MOLECULAR-DYNAMICS; ALUMINUM NITRIDE; COMPRESSION; CERAMICS; WAVES; TRANSFORMATION; CONSTRUCTION; SIMULATIONS; TEMPERATURE; TRANSITION;
D O I
10.1063/1.5025583
中图分类号
O59 [应用物理学];
学科分类号
摘要
The understanding of the nanoscale mechanisms of shock damage and failure in SiC is essential for its application in effective and damage tolerant coatings. We use molecular-dynamics simulations to investigate the shock properties of 3C-SiC along low-index crystallographic directions and in nanocrystalline samples with 5 nm and 10 nm grain sizes. The predicted Hugoniot in the particle velocity range of 0.1 km/s-6.0 km/s agrees well with experimental data. The shock response transitions from elastic to plastic, predominantly deformation twinning, to structural transformation to the rock-salt phase. The predicted strengths from 12.3 to 30.9 GPa, at the Hugoniot elastic limit, are in excellent agreement with experimental data. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 56 条
[11]   Silicon carbide electronic materials and devices [J].
Capano, MA ;
Trew, RJ .
MRS BULLETIN, 1997, 22 (03) :19-22
[12]   Shock-induced localized amorphization in boron carbide [J].
Chen, MW ;
McCauley, JW ;
Hemker, KJ .
SCIENCE, 2003, 299 (5612) :1563-1566
[13]   SHEAR STRENGTHS OF ALUMINUM NITRIDE AND TITANIUM DIBORIDE UNDER PLANE SHOCK-WAVE COMPRESSION [J].
DANDEKAR, DP .
JOURNAL DE PHYSIQUE IV, 1994, 4 (C8) :379-384
[14]   EQUATION OF STATE OF ALUMINUM NITRIDE AND ITS SHOCK RESPONSE [J].
DANDEKAR, DP ;
ABBATE, A ;
FRANKEL, J .
JOURNAL OF APPLIED PHYSICS, 1994, 76 (07) :4077-4085
[15]   Grain boundary diffusion of Ag through polycrystalline SiC in TRISO fuel particles [J].
Deng, Jie ;
Ko, Hyunseok ;
Demkowicz, Paul ;
Morgan, Dane ;
Szlufarska, Izabela .
JOURNAL OF NUCLEAR MATERIALS, 2015, 467 :332-340
[16]   Microstructure and tribological properties of advanced carbon/silicon carbide aircraft brake materials [J].
Fan, Shangwu ;
Zhang, Litong ;
Xu, Yongdong ;
Cheng, Laifei ;
Tian, Guanglai ;
Ke, Shaochang ;
Xu, Fang ;
Liu, Haiping .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (14) :3002-3009
[17]   PROCEDURE FOR THE CONSTRUCTION OF VORONOI POLYHEDRA [J].
FINNEY, JL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 32 (01) :137-143
[18]   High-toughness silicon carbide as armor [J].
Flinders, M ;
Ray, D ;
Anderson, A ;
Cutler, RA .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2005, 88 (08) :2217-2226
[19]   Orientation dependence in molecular dynamics simulations of shocked single crystals [J].
Germann, TC ;
Holian, BL ;
Lomdahl, PS ;
Ravelo, R .
PHYSICAL REVIEW LETTERS, 2000, 84 (23) :5351-5354
[20]  
Gorelskii VA, 2000, CHEM PHYS REP+, V18, P2211