A numerical modelling describing a pulsed nanosecond laser interaction with a titanium target is presented, resulting in the study of the plume expansion in vacuum or in background gas, using the species transport model available in Fluent computational fluid dynamics code. The heat transfers in the solid target and the molten material are modeled using an enthalpy formulation for the solid-liquid phase changing. The effect of laser fluences is investigated, and results are presented as a function of time. Moreover, the plasma or the vapour dynamics is calculated by solving a set of Navier- Stokes equations. The plasma absorption by inverse Bremsstrahlung, the ionization states and the density profiles of the Titanium ions and electrons in the plume are interactively included in the Fluent calculation process by the mean of User Defined Functions (UDFs) used in order to take into account the specificity of our problem. The ionization is computed by solving the Saha-Eggert equation assuming local thermodynamic equilibrium (LTE) conditions.