Periodic expansion in determining minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms

被引:9
作者
Graff, Grzegorz [1 ]
Lebiedz, Malgorzata [2 ]
Myszkowski, Adrian [1 ]
机构
[1] Gdansk Univ Technol, Fac Appl Phys & Math, Narutowicza 11-12, PL-80233 Gdansk, Poland
[2] Univ Gdansk, Inst Math, Wita Stwosza 57, PL-80952 Gdansk, Poland
关键词
Morse-Smale diffeomorphism; Lefschetz number; periodic expansion; zeta function; set of periods; non-orientable compact surfaces; FIXED-POINT INDEXES; TRANSVERSAL MAPS; SELF-MAPS; NUMBER;
D O I
10.1007/s11784-019-0680-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We apply the representation of Lefschetz numbers of iterates in the form of periodic expansion to determine the minimal sets of Lefschetz periods of Morse-Smale diffeomorphisms. Applying this approach we present an algorithmic method of finding the family of minimal sets of Lefschetz periods for Ng, a non-orientable compact surfaces without boundary of genus g. We also partially confirm the conjecture of Llibre and Sirvent (J Diff Equ Appl 19(3):402-417, 2013) proving that there are no algebraic obstacles in realizing any set of odd natural numbers as the minimal set of Lefschetz periods on Ng for any g.
引用
收藏
页数:21
相关论文
共 34 条
[1]   THE BEHAVIOR OF THE INDEX OF PERIODIC POINTS UNDER ITERATIONS OF A MAPPING [J].
BABENKO, IK ;
BOGATYI, SA .
MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 38 (01) :1-26
[2]   MAYER-VIETORIS PROPERTY OF THE FIXED POINT INDEX [J].
Barge, Hector ;
Wojcik, Klaudiusz .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2017, 50 (02) :643-667
[3]   On the Lefschetz zeta function and the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms on products of l-spheres [J].
Berrizbeitia, Pedro ;
Gonzalez, Marcos J. ;
Sirvent, Victor F. .
TOPOLOGY AND ITS APPLICATIONS, 2018, 235 :428-444
[4]  
CHOW SN, 1983, LECT NOTES MATH, V1007, P109
[5]   FIXED-POINT INDEXES OF ITERATED MAPS [J].
DOLD, A .
INVENTIONES MATHEMATICAE, 1983, 74 (03) :419-435
[6]  
Du BS, 2005, J INTEGER SEQ, V8
[7]  
Dummit David S, 1991, Abstract Algebra, V1999
[8]   Periodic points of holomorphic maps via Lefschetz numbers [J].
Fagella, N ;
Llibre, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (10) :4711-4730
[9]   SOME SMOOTH MAPS WITH INFINITELY MANY HYPERBOLIC PERIODIC POINTS [J].
FRANKS, JM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 226 (FEB) :175-179
[10]   Periodic Structure of Transversal Maps on CPn, HPn and Sp x Sq [J].
Garcia Guirao, Juan Luis ;
Llibre, Jaume .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2013, 12 (02) :417-425