Subspace foliations and collapse of closed flat manifolds

被引:0
作者
Bettiol, Renato G. [1 ,2 ]
Derdzinski, Andrzej [3 ]
Mossa, Roberto [4 ]
Piccione, Paolo [4 ]
机构
[1] CUNY, Lehman Coll, Dept Math, 250 Bedford Pk Blvd W, Bronx, NY 10468 USA
[2] CUNY, Grad Ctr, New York, NY USA
[3] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
[4] Univ Sao Paulo, Inst Matemat & Estat, Sao Paulo, SP, Brazil
基金
美国国家科学基金会;
关键词
Bieberbach group; collapse; crystallographic group; flat manifold; flat orbifold; foliation; Gromov-Hausdorff convergence; RIEMANNIAN-MANIFOLDS;
D O I
10.1002/mana.202000156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study relations between certain totally geodesic foliations of a closed flat manifold and its collapsed Gromov-Hausdorff limits. Our main results explicitly identify such collapsed limits as flat orbifolds, and provide algebraic and geometric criteria to determine whether they are singular.
引用
收藏
页码:2338 / 2356
页数:19
相关论文
共 18 条
[1]   Closure of singular foliations: the proof of Molino's conjecture [J].
Alexandrino, Marcos M. ;
Radeschi, Marco .
COMPOSITIO MATHEMATICA, 2017, 153 (12) :2577-2590
[2]   INFINITELY MANY SOLUTIONS TO THE YAMABE PROBLEM ON NONCOMPACT MANIFOLDS [J].
Bettiol, Renato G. ;
Piccione, Paolo .
ANNALES DE L INSTITUT FOURIER, 2018, 68 (02) :589-609
[3]   Teichmuller theory and collapse of flat manifolds [J].
Bettiol, Renato G. ;
Derdzinski, Andrzej ;
Piccione, Paolo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (04) :1247-1268
[4]   The motion groups of the Euclidean space (First essay) [J].
Bieberbach, L .
MATHEMATISCHE ANNALEN, 1911, 70 :297-336
[5]  
Charlap LeonardS., 1986, Bieberbach groups and flat manifolds
[6]  
CHEEGER J, 1986, J DIFFER GEOM, V23, P309
[7]  
CHEEGER J, 1990, J DIFFER GEOM, V32, P269
[8]  
Derdzinski A., 2019, PREPRINT
[9]  
FUKAYA K, 1988, J DIFFER GEOM, V28, P1, DOI 10.4310/jdg/1214442157