Revisiting Deep Convolutional Neural Networks for RGB-D Based Object Recognition

被引:5
作者
Madai-Tahy, Lorand [1 ]
Otte, Sebastian [1 ]
Hanten, Richard [1 ]
Zell, Andreas [1 ]
机构
[1] Univ Tubingen, Cognit Syst Grp, Sand 1, D-72076 Tubingen, Germany
来源
ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II | 2016年 / 9887卷
关键词
Deep learning; Deep Convolutional Neural Networks; Fusion networks; Object recognition; RGB-D; Surface normals;
D O I
10.1007/978-3-319-44781-0_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we reinvestigate Deep Convolutional Neural Networks (DCNNs) for RGB-D based object recognition. A previously proposed method in which DCNNs are pretrained on a large-scale RGB database and just fine-tuned to process colorized depth images is taken up and extended. We introduce and analyse multiple solutions to improve depth colorization and propose a new method for depth colorization based on surface normals. We show that our improvements increase the classification accuracy significantly, such that we can present new state-of-the-art results for the Washington RGB-D dataset. Our results also indicate that classification using only surface normals without RGB images outperforms classification using pure RGB images, which is to our knowledge a novel discovery in the field of DCNNs.
引用
收藏
页码:29 / 37
页数:9
相关论文
共 12 条
[1]  
[Anonymous], 2012, Advances in Neural Information Processing Systems
[2]  
Asif U, 2015, IEEE INT CONF ROBOT, P1295, DOI 10.1109/ICRA.2015.7139358
[3]  
Blum M, 2012, IEEE INT CONF ROBOT, P1298, DOI 10.1109/ICRA.2012.6225188
[4]  
Bo L., 2012, P INT S EXP ROB ISER, P387, DOI DOI 10.1007/978-3-319-00065-7_27
[5]  
Bo LF, 2011, IEEE INT C INT ROBOT, P821, DOI 10.1109/IROS.2011.6048717
[6]  
Bo LF, 2011, PROC CVPR IEEE, P1729, DOI 10.1109/CVPR.2011.5995719
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]  
Eitel A, 2015, IEEE INT C INT ROBOT, P681, DOI 10.1109/IROS.2015.7353446
[9]   Learning Rich Features from RGB-D Images for Object Detection and Segmentation [J].
Gupta, Saurabh ;
Girshick, Ross ;
Arbelaez, Pablo ;
Malik, Jitendra .
COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 :345-360
[10]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90