Droplet size impact on lactofen and acifluorfen efficacy for Palmer amaranthus (Amaranthus palmeri) control

被引:3
|
作者
Franca, Lucas X. [1 ]
Dodds, Darrin M. [1 ]
Butts, Thomas R. [2 ]
Kruger, Greg R. [2 ]
Reynolds, Daniel B. [1 ]
Mills, J. Anthony [3 ]
Bond, Jason A. [4 ]
Catchot, Angus L. [5 ]
Peterson, Daniel G. [1 ,6 ]
机构
[1] Mississippi State Univ, Dept Plant & Soil Sci, 32 Creelman St,Off 114,Dorman Hall, Mississippi State, MS 39762 USA
[2] Univ Nebraska, Dept Agron & Hort, North Platte, NE USA
[3] Bayer CropSci, Weed Management Technol Dev Representat, Collierville, TN USA
[4] Mississippi State Univ, Delta Res & Extens Ctr, Stoneville, MS USA
[5] Mississippi State Univ, Dept Biochem Mol Biol Entomol & Plant Pathol, Mississippi State, MS 39762 USA
[6] Mississippi State Univ, Inst Genom Biocomp & Biotechnol, Mississippi State, MS 39762 USA
关键词
PPO-inhibiting herbicides; pulse width modulation (PWM); diphenyl ether herbicides; application optimization; weed control; PURSLANE TRIANTHEMA-PORTULACASTRUM; SMELLMELON CUCUMIS-MELO; CARRIER VOLUME; NOZZLE TYPE; SPRAY VOLUME; FLAT FAN; DRIFT; DEPOSITION; HERBICIDES; PERFORMANCE;
D O I
10.1017/wet.2019.133
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Herbicide applications performed with pulse width modulation (PWM) sprayers to deliver specific spray droplet sizes could maintain product efficacy, minimize potential off-target movement, and increase flexibility in field operations. Given the continuous expansion of herbicide-resistant Palmer amaranth populations across the southern and midwestern United States, efficacious and cost-effective means of application are needed to maximize Palmer amaranth control. Experiments were conducted in two locations in Mississippi (2016, 2017, and 2018) and one location in Nebraska (2016 and 2017) for a total of 7 site-years. The objective of this study was to evaluate the influence of a range of spray droplet sizes [150 (Fine) to 900 mu m (Ultra Coarse)] on lactofen and acifluorfen efficacy for Palmer amaranth control. The results of this research indicated that spray droplet size did not influence lactofen efficacy on Palmer amaranth. Palmer amaranth control and percent dry-biomass reduction remained consistent with lactofen applied within the aforementioned droplet size range. Therefore, larger spray droplets should be used as part of a drift mitigation approach. In contrast, acifluorfen application with 300-mu m (Medium) spray droplets provided the greatest Palmer amaranth control. Although percent biomass reduction was numerically greater with 300-mu m (Medium) droplets, results did not differ with respect to spray droplet size, possibly as a result of initial plant injury, causing weight loss, followed by regrowth. Overall, 900-mu m (Ultra Coarse) droplets could be used effectively without compromising lactofen efficacy on Palmer amaranth, and 300-mu m (Medium) droplets should be used to achieve maximum Palmer amaranth control with acifluorfen.
引用
收藏
页码:416 / 423
页数:8
相关论文
共 50 条
  • [31] Palmer Amaranth (Amaranthus palmeri) Management in GlyTol® LibertyLink® Cotton
    Reed, Jacob D.
    Keeling, J. Wayne
    Dotray, Peter A.
    WEED TECHNOLOGY, 2014, 28 (04) : 592 - 600
  • [32] Competitive impact of Palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield
    Morgan, GD
    Baumann, PA
    Chandler, JM
    WEED TECHNOLOGY, 2001, 15 (03) : 408 - 412
  • [33] Palmer amaranth (Amaranthus palmeri) control affected by weed size and herbicide spray solution with nozzle type pairings
    Kouame, Koffi Badou-Jeremie
    Butts, Thomas R.
    Norsworthy, Jason K.
    Davis, Jason
    Piveta, Leonard B.
    WEED TECHNOLOGY, 2023,
  • [34] Control of Palmer amaranth (Amaranthus palmeri) regrowth following failed applications of glufosinate and fomesafen
    Haarmann, Jesse A.
    Young, Bryan G.
    Johnson, William G.
    WEED TECHNOLOGY, 2021, 35 (03) : 464 - 470
  • [35] PAM: Decision Support for Long-Term Palmer Amaranth (Amaranthus palmeri) Control
    Lindsay, Karen
    Popp, Michael
    Norsworthy, Jason
    Bagavathiannan, Muthukumar
    Powles, Stephen
    Lacoste, Myrtille
    WEED TECHNOLOGY, 2017, 31 (06) : 915 - 927
  • [36] Thermal dependence of pyrithiobac efficacy in Amaranthus palmeri
    Light, GG
    Dotray, PA
    Mahan, JR
    WEED SCIENCE, 1999, 47 (06) : 644 - 650
  • [37] Evaluation of Wick-Applied Glyphosate for Palmer Amaranth (Amaranthus palmeri) Control in Sweetpotato
    Meyers, Stephen L.
    Jennings, Katherine M.
    Schultheis, Jonathan R.
    Monks, David W.
    WEED TECHNOLOGY, 2016, 30 (03) : 765 - 772
  • [38] Tall Waterhemp (Amaranthus tuberculatus) and Palmer amaranth (Amaranthus palmeri) Seed Production and Retention at Soybean Maturity
    Schwartz, Lauren M.
    Norsworthy, Jason K.
    Young, Bryan G.
    Bradley, Kevin W.
    Kruger, Greg R.
    Davis, Vince M.
    Steckel, Larry E.
    Walsh, Michael J.
    WEED TECHNOLOGY, 2016, 30 (01) : 284 - 290
  • [39] Palmer amaranth (Amaranthus palmeri) control in postharvest wheat stubble in the Central Great Plains
    Kumar, Vipan
    Liu, Rui
    Jhala, Amit J.
    Jha, Prashant
    Manuchehri, Misha
    WEED TECHNOLOGY, 2021, 35 (06) : 945 - 949
  • [40] Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-inhibiting herbicides
    Sprague, CL
    Stoller, EW
    Wax, LM
    Horak, MJ
    WEED SCIENCE, 1997, 45 (02) : 192 - 197