Zeros of Jones polynomials for families of knots and links

被引:25
作者
Chang, SC [1 ]
Shrock, R [1 ]
机构
[1] SUNY Stony Brook, CN Yang Inst Theoret Phys, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0378-4371(01)00364-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate Jones polynomials V-L(t) for several families of alternating knots and links, by, computing the Tutte polynomials T(G, x, y) for the associated graphs G and then obtaining VL(t) as a special case of the Tutte polynomial. For each of these families we determine the zeros of the Jones. polynomial, including the accumulation set in the limit of infinitely many crossings. A discussion is also, given of the calculation of Jones polynomials for non-alternating links. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:196 / 218
页数:23
相关论文
共 73 条
[1]   SINGULARITY OF SPECIFIC HEAT IN 2ND ORDER PHASE TRANSITION [J].
ABE, R .
PROGRESS OF THEORETICAL PHYSICS, 1967, 38 (02) :322-&
[2]  
[Anonymous], 1991, GRAPH THEORY COMBINA
[3]   CHROMATIC POLYNOMIALS OF LARGE TRIANGULAR LATTICES [J].
BAXTER, RJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (15) :5241-5261
[4]   IS THE 4-COLOR CONJECTURE ALMOST FALSE [J].
BERAHA, S ;
KAHANE, J .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 27 (01) :1-12
[5]   LIMITS OF CHROMATIC ZEROS OF SOME FAMILIES OF MAPS [J].
BERAHA, S ;
KAHANE, J ;
WEISS, NJ .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 28 (01) :52-65
[6]   T=0 partition functions for Potts antiferromagnets on square lattice strips with (twisted) periodic boundary conditions [J].
Biggs, N ;
Shrock, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (46) :L489-L493
[7]  
Biggs N., 1993, ALGEBRAIC GRAPH THEO
[8]  
BIGGS NL, 1972, J COMB THEORY B, V0012, P00123, DOI [10.1016/0095-8956, DOI 10.1016/0095-8956]
[9]  
Bollob┬u├s B., 2013, MODERN GRAPH THEORY, V184
[10]  
Burde G., 1985, Knots