Maximal Abelian Dimensions in Some Families of Nilpotent Lie Algebras

被引:5
作者
Benjumea, Juan C. [2 ]
Nunez, Juan [2 ]
Tenorio, Angel F. [1 ]
机构
[1] Univ Pablo Olavide, Dept Econ Metodos Cuantitat & Ha Econ, Escuela Politecn Super, Seville 41013, Spain
[2] Univ Seville, Fac Matemat, Dept Geometria & Topol, E-41080 Seville, Spain
关键词
Nilpotent Lie algebras; Maximal abelian dimension; Heisenberg algebras; BLACK-HOLES;
D O I
10.1007/s10468-010-9260-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the maximal abelian dimension of a Lie algebra, that is, the maximal value for the dimensions of its abelian Lie subalgebras. Indeed, we compute the maximal abelian dimension for every nilpotent Lie algebra of dimension less than 7 and for the Heisenberg algebra , with . In this way, an algorithmic procedure is introduced and applied to compute the maximal abelian dimension for any arbitrary nilpotent Lie algebra with an arbitrary dimension. The maximal abelian dimension is also given for some general families of nilpotent Lie algebras.
引用
收藏
页码:697 / 713
页数:17
相关论文
共 50 条
[41]   Automorphism groups of nilpotent Lie algebras associated to certain graphs [J].
Chakrabarti, Debraj ;
Mainkar, Meera ;
Swiatlowski, Savannah .
COMMUNICATIONS IN ALGEBRA, 2020, 48 (01) :263-273
[42]   Lower Bounds for Algebraic Algorithms for Nilpotent and Solvable Lie Algebras [J].
Leont'ev, A. V. .
RUSSIAN MATHEMATICS, 2010, 54 (03) :12-18
[43]   A computer-based approach to the classification of nilpotent Lie algebras [J].
Schneider, C .
EXPERIMENTAL MATHEMATICS, 2005, 14 (02) :153-160
[44]   Abelian subalgebras and ideals of maximal dimension in Zinbiel algebras [J].
Ceballos, Manuel ;
Towers, David A. .
COMMUNICATIONS IN ALGEBRA, 2023, 51 (04) :1323-1333
[45]   2-capability and 2-nilpotent multiplier of finite dimensional nilpotent Lie algebras [J].
Niroomand, Peyman ;
Parvizi, Mohsen .
JOURNAL OF GEOMETRY AND PHYSICS, 2017, 121 :180-185
[46]   Lie bialgebra structures on 2-step nilpotent graph algebras [J].
Farinati, Marco A. ;
Patricia Jancsa, Alejandra .
JOURNAL OF ALGEBRA, 2018, 505 :70-91
[47]   Abelian Subalgebras in Low-Dimensional Solvable Lie Algebras [J].
Ceballos, Manuel ;
Nunez, Juan ;
Tenorio, Angel F. .
RECENT ADVANCES IN APPLIED MATHEMATICS, 2009, :151-+
[48]   The center of the universal enveloping algebras of small-dimensional nilpotent Lie algebras in prime characteristic [J].
Vanderlei Lopes de Jesus ;
Csaba Schneider .
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 :243-266
[49]   GRADINGS ON LIE ALGEBRAS, SYSTOLIC GROWTH, AND COHOPFIAN PROPERTIES OF NILPOTENT GROUPS [J].
Cornulier, Yves .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2016, 144 (04) :693-744
[50]   The center of the universal enveloping algebras of small-dimensional nilpotent Lie algebras in prime characteristic [J].
de Jesus, Vanderlei Lopes ;
Schneider, Csaba .
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2023, 64 (02) :243-266