Maximal Abelian Dimensions in Some Families of Nilpotent Lie Algebras

被引:5
|
作者
Benjumea, Juan C. [2 ]
Nunez, Juan [2 ]
Tenorio, Angel F. [1 ]
机构
[1] Univ Pablo Olavide, Dept Econ Metodos Cuantitat & Ha Econ, Escuela Politecn Super, Seville 41013, Spain
[2] Univ Seville, Fac Matemat, Dept Geometria & Topol, E-41080 Seville, Spain
关键词
Nilpotent Lie algebras; Maximal abelian dimension; Heisenberg algebras; BLACK-HOLES;
D O I
10.1007/s10468-010-9260-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the maximal abelian dimension of a Lie algebra, that is, the maximal value for the dimensions of its abelian Lie subalgebras. Indeed, we compute the maximal abelian dimension for every nilpotent Lie algebra of dimension less than 7 and for the Heisenberg algebra , with . In this way, an algorithmic procedure is introduced and applied to compute the maximal abelian dimension for any arbitrary nilpotent Lie algebra with an arbitrary dimension. The maximal abelian dimension is also given for some general families of nilpotent Lie algebras.
引用
收藏
页码:697 / 713
页数:17
相关论文
共 50 条
  • [1] Maximal Abelian Dimensions in Some Families of Nilpotent Lie Algebras
    Juan C. Benjumea
    Juan Núñez
    Ángel F. Tenorio
    Algebras and Representation Theory, 2012, 15 : 697 - 713
  • [2] SOLVABLE LIE ALGEBRAS AND MAXIMAL ABELIAN DIMENSIONS
    Tenorio, A. F.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2008, 77 (01): : 141 - 145
  • [3] Abelian subalgebras in some particular types of Lie algebras
    Ceballos, Manuel
    Nunez, Juan
    Tenorio, Angel F.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E401 - E408
  • [4] Some Properties of Nilpotent Lie Algebras
    Eghdami, Hossein
    Gholamian, Ali
    MATEMATIKA, 2013, 29 (02) : 173 - 178
  • [5] Algorithm to compute the maximal abelian dimension of Lie algebras
    Ceballos, M.
    Nunez, J.
    Tenorio, A. F.
    COMPUTING, 2009, 84 (3-4) : 231 - 239
  • [6] Algorithm to compute the maximal abelian dimension of Lie algebras
    M. Ceballos
    J. Núñez
    A. F. Tenorio
    Computing, 2009, 84 : 231 - 239
  • [7] Nilpotent Lie algebras with two centralizer dimensions over a finite field
    Kundu, Rijubrata
    Naik, Tushar Kanta
    Singh, Anupam
    JOURNAL OF ALGEBRA, 2023, 633 : 362 - 388
  • [8] Gradings for Nilpotent Lie Algebras
    Hakavuori, Eero
    Kivioja, Ville
    Moisala, Terhi
    Tripaldi, Francesca
    JOURNAL OF LIE THEORY, 2022, 32 (02) : 383 - 412
  • [9] Free nilpotent and nilpotent quadratic Lie algebras
    Benito, P.
    de-la-Concepcion, D.
    Laliena, J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 519 : 296 - 326
  • [10] Finite-Dimensional Nilpotent Lie Algebras with Central Derivations of Nonminimal Dimensions
    Moosavinejad, Seyed Mahdi
    Saeedi, Farshid
    VIETNAM JOURNAL OF MATHEMATICS, 2024, 52 (01) : 211 - 217