Estimating the Contact Endurance of the AISI 321 Stainless Steel Under Contact Gigacycle Fatigue Tests

被引:12
作者
Savrai, R. A. [1 ]
Makarov, A. V. [1 ,2 ,3 ]
Osintseva, A. L. [1 ]
Malygina, I. Yu. [1 ]
机构
[1] Russian Acad Sci, Inst Engn Sci, Ural Branch, 34 Komsomolskaya St, Ekaterinburg 620049, Russia
[2] Russian Acad Sci, MN Miheev Inst Met Phys, Ural Branch, 18 S Kovalevskaya St, Ekaterinburg 620990, Russia
[3] Ural Fed Univ, 19 Mira St, Ekaterinburg 620002, Russia
基金
俄罗斯基础研究基金会;
关键词
austenitic stainless steel; contact gigacycle fatigue; failure analysis; phase composition; structure; ULTRASONIC FATIGUE; CRACK INITIATION; BEHAVIOR; MODULUS; MICROSTRUCTURE; STRENGTH; HARDNESS; REGIME; GROWTH; LOAD;
D O I
10.1007/s11665-018-3154-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Mechanical testing of the AISI 321 corrosion resistant austenitic steel for contact gigacycle fatigue has been conducted with the application of a new method of contact fatigue testing with ultrasonic frequency of loading according to a pulsing impact "plane-to-plane" contact scheme. It has been found that the contact endurance (the ability to resist the fatigue spalling) of the AISI 321 steel under contact gigacycle fatigue loading is determined by its plasticity margin and the possibility of additional hardening under contact loading. It is demonstrated that the appearance of localized deep and long areas of spalling on a material surface can serve as a qualitative characteristic for the loss of the fatigue strength of the AISI 321 steel under impact contact fatigue loading. The value of surface microhardness measured within contact spots and the maximum depth of contact damages in the peripheral zone of contact spots can serve as quantitative criteria for that purpose.
引用
收藏
页码:601 / 611
页数:11
相关论文
共 43 条
  • [1] Structure of surface layers produced by non-vacuum electron beam boriding
    Bataev, I. A.
    Bataev, A. A.
    Golkovski, M. G.
    Krivizhenko, D. S.
    Losinskaya, A. A.
    Lenivtseva, O. G.
    [J]. APPLIED SURFACE SCIENCE, 2013, 284 : 472 - 481
  • [2] Bathias C., 2004, GIGACYCLE FATIGUE ME, P328
  • [3] Coupling effect of plasticity, thermal dissipation and metallurgical stability in ultrasonic fatigue
    Bathias, Claude
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2014, 60 : 18 - 22
  • [4] Change of Young's modulus of cold-deformed pure iron in a tensile test
    Benito, JA
    Manero, JM
    Jorba, J
    Roca, A
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2005, 36A (12): : 3317 - 3324
  • [5] Dobromyslov A. V., 2015, DIAGN RESOUR MECH MA
  • [6] Fish-eye shape prediction with gigacycle fatigue failure
    Duan, Z.
    Shi, H.
    Ma, X.
    [J]. FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2011, 34 (10) : 832 - 837
  • [7] Visualization of internal small fatigue crack growth
    Furuya, Y.
    [J]. MATERIALS LETTERS, 2013, 112 : 139 - 141
  • [8] High-temperature ultrasonic fatigue testing of single-crystal superalloys
    Furuya, Y.
    Kobayashi, K.
    Hayakawa, M.
    Sakamoto, M.
    Koizumi, Y.
    Harada, H.
    [J]. MATERIALS LETTERS, 2012, 69 : 1 - 3
  • [9] Size effects in gigacycle fatigue of high-strength steel under ultrasonic fatigue testing
    Furuya, Yoshiyuki
    [J]. FATIGUE 2010, 2010, 2 (01): : 485 - 490
  • [10] Fatigue damage evaluation of low-alloy steel welded joints in fusion zone and heat affected zone based on frequency response changes in gigacycle fatigue
    He, Chao
    Huang, Chongxiang
    Liu, Yongjie
    Wang, Qingyuan
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2014, 61 : 297 - 303