A general quantum difference calculus

被引:24
作者
Hamza, Alaa E. [1 ]
Sarhan, Abdel-Shakoor M. [2 ]
Shehata, Enas M. [2 ]
Aldwoah, Khaled A. [3 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
[2] Menoufia Univ, Fac Sci, Dept Math, Shibin Al Kawm, Egypt
[3] Islamic Univ Madinah, Fac Sci, Dept Math, Al Madinah Al Munawarah, Saudi Arabia
来源
ADVANCES IN DIFFERENCE EQUATIONS | 2015年
关键词
quantum difference operator; quantum calculus; Hahn difference operator; Jackson q-difference operator;
D O I
10.1186/s13662-015-0518-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a strictly increasing continuous function beta, and we present a general quantum difference operator D-beta which is defined to be D(beta)f (t) = (f(beta(t)) -f(t))/(beta(t) - t). This operator yields the Hahn difference operator when beta(t) = qt + omega, the Jackson q-difference operator when beta(t) = qt, q is an element of (0, 1), omega > 0 are fixed real numbers and the forward difference operator when beta(t) = t + omega, omega > 0. A calculus based on the operator D-beta and its inverse is established.
引用
收藏
页数:19
相关论文
共 15 条
  • [1] Aldwoah K.A., 2012, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, V19, no, P93
  • [2] ALDWOAH KA, 2009, THESIS CAIRO U
  • [3] Hahn Difference Operator and Associated Jackson-Norlund Integrals
    Annaby, M. H.
    Hamza, A. E.
    Aldwoah, K. A.
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2012, 154 (01) : 133 - 153
  • [4] q-Fractional Calculus and Equations Preface
    Ismail, Mourad
    [J]. Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : IX - +
  • [5] Artur M.C., 2012, SYMMETRIC QUANTUM CA
  • [6] Auch TJ, 2013, THESIS U NEBRASKA LI
  • [7] Bangerezako G., 2008, INTRO Q DIFFERENCE E
  • [8] Bohner M, 2004, DYNAM SYST APPL, V13, P339
  • [9] Curtain R., 1977, FUNCTIONAL ANAL MODE
  • [10] Hahn W., 1949, MATH NACHR, V2, P4, DOI 10.1002/mana.19490020103