Homoclinic orbits of a Hamiltonian system

被引:67
作者
Ding, YH [1 ]
Willem, M
机构
[1] Acad Sinica, Inst Math, Beijing 100080, Peoples R China
[2] Univ Catholique Louvain, Dept Math, B-1348 Louvain, Belgium
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1999年 / 50卷 / 05期
关键词
homoclinic orbits; Hamiltonian systems; linking theorem; concentation-compactness;
D O I
10.1007/s000330050177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish existence results of homoclinic orbits of the first order time-dependent Hamiltonian system (z)over dot = JH(z) (t, z), where H(t, z) depends periodically on t, H(t, z) = (1)/(2)zL(t)z + W(t , z), L(t) is a symmetric matrix valued function and W(t, z) satisfies certain global superquadratic condition. We relax partly the assumption often used before: L is independent of t and sp(JL)boolean AND iR = phi.
引用
收藏
页码:759 / 778
页数:20
相关论文
共 20 条
[1]  
AMBROSETTI A, 1992, CR ACAD SCI I-MATH, V314, P601
[2]   On a nonlinear Schrodinger equation with periodic potential [J].
Bartsch, T ;
Ding, YH .
MATHEMATISCHE ANNALEN, 1999, 313 (01) :15-37
[3]  
COPPEL WA, 1978, LECT NOTES MATHS, V629
[4]  
COTIZELATI V, 1990, MATH ANN, V288, P133
[5]  
COTIZELATI V, 1991, J AM MATH SOC, V4, P693
[6]  
Ding Y., 1993, Dyn. Syst. Appl, V2, P131
[7]   HOMOCLINIC ORBITS FOR FIRST-ORDER HAMILTONIAN-SYSTEMS [J].
DING, YH ;
LI, SJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (02) :585-601
[9]   1ST ORDER ELLIPTIC-SYSTEMS AND THE EXISTENCE OF HOMOCLINIC ORBITS IN HAMILTONIAN-SYSTEMS [J].
HOFER, H ;
WYSOCKI, K .
MATHEMATISCHE ANNALEN, 1990, 288 (03) :483-503
[10]  
Kato T., 1966, Perturbation Theory for Linear Operators., DOI [10.1007/978-3-662-12678-3, DOI 10.1007/978-3-662-12678-3]