Preconditioning of complex symmetric linear systems with applications in optical tomography

被引:13
作者
Arridge, S. R. [1 ]
Egger, H. [2 ]
Schlottbom, M. [2 ]
机构
[1] UCL, Dept Comp Sci, London WC1E 6BT, England
[2] Tech Univ Darmstadt, Inst Numer Math, D-64293 Darmstadt, Germany
基金
英国工程与自然科学研究理事会;
关键词
Iterative methods; Complex symmetric linear systems; Parameter robust preconditioning; Even-parity radiative transfer; SN DISCRETIZATIONS; GMRES;
D O I
10.1016/j.apnum.2013.06.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the numerical solution of linear systems of the form (A + i kappa B)x = y, which arise in many applications, e.g., in time-harmonic acoustics, electromagnetics, or radiative transfer. We propose and analyze a class of preconditioners leading to complex symmetric iteration operators and investigate convergence of corresponding preconditioned iterative methods. Under mild assumptions on the operators A and B, we establish parameter and dimension independent convergence. The proposed methods are then applied to the solution of even-parity formulations of time-harmonic radiative transfer. For this application, we verify all assumptions required for our convergence analysis. The performance of the preconditioned iterations is then demonstrated by numerical tests supporting the theoretical results. (C) 2013 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:35 / 48
页数:14
相关论文
共 46 条
[1]   Algebraic multigrid methods for direct frequency response analyses in solid mechanics [J].
Adams, Mark F. .
COMPUTATIONAL MECHANICS, 2007, 39 (04) :497-507
[2]  
[Anonymous], 1988, Functional and variational methods
[3]  
[Anonymous], 1957, Introduction to Hilbert Space
[4]  
[Anonymous], 2000, MULTIGRID
[5]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[6]   Optical tomography in medical imaging [J].
Arridge, SR .
INVERSE PROBLEMS, 1999, 15 (02) :R41-R93
[7]  
Axelsson O, 2000, NUMER LINEAR ALGEBR, V7, P197, DOI 10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO
[8]  
2-S
[9]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[10]   Hermitian and skew-Hermitian splitting methods for non-hermitian positive definite linear systems [J].
Bai, ZZ ;
Golub, GH ;
Ng, MK .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2003, 24 (03) :603-626