Constrained test problems for multi-objective evolutionary optimization

被引:0
|
作者
Deb, K [1 ]
Pratap, A [1 ]
Meyarivan, T [1 ]
机构
[1] Indian Inst Technol, Kanpur Genet Algorithms Lab, KanGAL, Kanpur 208016, Uttar Pradesh, India
来源
EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, PROCEEDINGS | 2001年 / 1993卷
关键词
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Over the past few years, researchers have developed a number of multi-objective evolutionary algorithms (MOEAs). Although most studies concentrated on solving unconstrained optimization problems, there exists a few studies where MOEAs have been extended to solve constrained optimization problems. As the constraint handling MOEAs gets popular, there is a need for developing test problems which can evaluate the algorithms well. In this paper, we review a number of test problems used in the literature and then suggest a set of tunable test problems for constraint handling. Finally, NSGA-II with an innovative constraint handling strategy is compared with a couple of existing algorithms in solving some of the test problems.
引用
收藏
页码:284 / 298
页数:15
相关论文
共 50 条
  • [1] A Comparative Study of Constrained Multi-objective Evolutionary Algorithms on Constrained Multi-objective Optimization Problems
    Fan, Zhun
    Li, Wenji
    Cai, Xinye
    Fang, Yi
    Lu, Jiewei
    Wei, Caimin
    2017 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2017, : 209 - 216
  • [2] An evolutionary algorithm for constrained multi-objective optimization problems
    Min, Hua-Qing
    Zhou, Yu-Ren
    Lu, Yan-Sheng
    Jiang, Jia-zhi
    APSCC: 2006 IEEE ASIA-PACIFIC CONFERENCE ON SERVICES COMPUTING, PROCEEDINGS, 2006, : 667 - +
  • [3] Solving Constrained Multi-objective Optimization Problems with Evolutionary Algorithms
    Snyman, Frikkie
    Helbig, Marde
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2017, PT II, 2017, 10386 : 57 - 66
  • [4] A multi-objective evolutionary algorithm for steady-state constrained multi-objective optimization problems
    Yang, Yongkuan
    Liu, Jianchang
    Tan, Shubin
    APPLIED SOFT COMPUTING, 2021, 101
  • [5] A Tunable Constrained Test Problems Generator for Multi-objective Optimization
    Cheng Peng
    SECOND INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTING: WGEC 2008, PROCEEDINGS, 2008, : 96 - 100
  • [6] Multi-objective evolutionary algorithm based on preference for constrained optimization problems
    Dong, Ning
    Wang, Yuping
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2014, 41 (01): : 98 - 104
  • [7] Constructing Test Problems for Bilevel Evolutionary Multi-Objective Optimization
    Deb, Kalyanmoy
    Sinha, Ankur
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 1153 - 1160
  • [8] A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio
    Yang, Yongkuan
    Liu, Jianchang
    Tan, Shubin
    Wang, Honghai
    APPLIED SOFT COMPUTING, 2019, 80 : 42 - 56
  • [9] A dynamic tri-population multi-objective evolutionary algorithm for constrained multi-objective optimization problems
    Yang, Yongkuan
    Yan, Bing
    Kong, Xiangsong
    EVOLUTIONARY INTELLIGENCE, 2024, 17 (04) : 2791 - 2806
  • [10] Evolutionary constrained multi-objective optimization: a review
    Jing Liang
    Hongyu Lin
    Caitong Yue
    Xuanxuan Ban
    Kunjie Yu
    Vicinagearth, 1 (1):