Hybrid functional study on diffusion of silicate cathode material Li2NiSiO4

被引:15
作者
Bui, Kieu My [1 ,2 ]
Van An Dinh [2 ]
Ohno, Takahisa [1 ,2 ,3 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058577, Japan
[2] Global Res Ctr Nanomat Sci Energy & Environm, GREEN, Tsukuba, Ibaraki 3050047, Japan
[3] Natl Inst Mat Sci NIMS, CMSU, Tsukuba, Ibaraki 3050047, Japan
来源
24TH IUPAP CONFERENCE ON COMPUTATIONAL PHYSICS (IUPAP-CCP 2012) | 2013年 / 454卷
关键词
INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; PHOSPHO-OLIVINES; LITHIUM; LI2FESIO4;
D O I
10.1088/1742-6596/454/1/012061
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The orthosilicate systems Li2MSiO4 (M = Fe, Mn, Co and Ni) are recently believed to be a promising alternative to the olivine phosphates. In this paper, we present an interpretation of the diffusion mechanism for polaron-Li vacancy complexes in Li2NiSiO4 based on the hybrid functional method HSE06. A comparison between the results obtained by GGA+U and HSE06 methods is carried out. The results confirm that the HSE06 method succeeds in describing the polaron localization in Li2NiSiO4. A polaron-Li vacancy complex model (V. A. Dinh et al., Appl. Phys. Express, 5, 045801 (2012)) is used to handle the explanation of the diffusion mechanism in this material. Four elementary diffusion processes for the polaron-Li vacancy complex are investigated and the preferable diffusion pathways are constructed by combining the possible elementary processes. It is found that the Li diffusion may proceed along the two preferable pathways in the [100] and [001] directions with the activation barriers of 1.17 and 0.96 eV, respectively. Furthermore, the accompanied migration of polaron can enhance the diffusion rate of Li ion in Li2NiSiO4.
引用
收藏
页数:6
相关论文
共 22 条
[11]   Structure of Li2FeSiO4 [J].
Nishimura, Shin-ichi ;
Hayase, Shogo ;
Kanno, Ryoji ;
Yashima, Masatomo ;
Nakayama, Noriaki ;
Yamada, Atsuo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (40) :13212-13213
[12]   Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material [J].
Nytén, A ;
Abouimrane, A ;
Armand, M ;
Gustafsson, T ;
Thomas, JO .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (02) :156-160
[13]   The lithium extraction/insertion mechanism in Li2FeSiO4 [J].
Nyten, Anton ;
Kamali, Saeed ;
Haggstrom, Lennart ;
Gustafsson, Torbjorn ;
Thomas, John O. .
JOURNAL OF MATERIALS CHEMISTRY, 2006, 16 (23) :2266-2272
[14]   Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory [J].
Ong, Shyue Ping ;
Chevrier, Vincent L. ;
Ceder, Gerbrand .
PHYSICAL REVIEW B, 2011, 83 (07)
[15]   Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J].
Padhi, AK ;
Nanjundaswamy, KS ;
Goodenough, JB .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (04) :1188-1194
[16]   Screened hybrid density functionals applied to solids (vol 124, pg 154709 2006) [J].
Paier, J. ;
Marsman, M. ;
Hummer, K. ;
Kresse, G. ;
Gerber, I. C. ;
Angyan, J. G. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (24)
[17]  
Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
[18]   Crystal Structure, Energetics, And Electrochemistry of Li2FeSiO4 Polymorphs from First Principles Calculations [J].
Saracibar, A. ;
Van der Ven, A. ;
Arroyo-de Dompablo, M. E. .
CHEMISTRY OF MATERIALS, 2012, 24 (03) :495-503
[19]   Issues and challenges facing rechargeable lithium batteries [J].
Tarascon, JM ;
Armand, M .
NATURE, 2001, 414 (6861) :359-367
[20]  
Thouin F, 2019, NAT MATER, V18, P349, DOI [10.1038/s41563-018-0262-7, 10.1016/0022-3093(95)00355-X]