Coarse Grained Heat-Affected Zone Microstructure and Brittleness of Ti-Nb-B Microalloyed High Toughness and Wear Resistant Steel

被引:3
|
作者
Li, Defa [1 ,2 ]
Wu, Kaiming [1 ]
Dong, Hangyu [1 ]
Isayev, Oleg [1 ]
Hress, Oleksandr [1 ]
机构
[1] Wuhan Univ Sci & Technol, Int Res Inst Steel Technol, State Key Lab Refractories & Met, Hubei Prov Key Lab Syst Sci Met Proc, Wuhan 430081, Hubei, Peoples R China
[2] R&D Ctr Wuhan Iron & Steel Co Ltd, Wuhan Branch Baosteel Cent Res Inst, Wuhan 430080, Hubei, Peoples R China
来源
METALS | 2019年 / 9卷 / 03期
关键词
Ti-Nb-B microalloying; CGHAZ; microstructure; brittleness; IMPACT TOUGHNESS; INTERPHASE PRECIPITATION; MECHANICAL-PROPERTIES; BEHAVIOR; TRANSFORMATION; REFINEMENT; MN;
D O I
10.3390/met9030289
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The effects of B, Ti-Nb, and Ti-Nb-B microalloying on the microstructure and properties of the coarse grain heat affected zone (CGHAZ) of C-Mn-Si-Mo wear-resistant steel have been investigated by means of thermal simulation, mechanical property test, microstructure analysis, and theoretical formula calculation. The B, Ti-Nb, and Ti-Nb-B microalloyed C-Mn-Si-Mo wear-resistant steels prepared by a controlled rolling + direct quenching + low temperature (CR + DQ + T) process have martensite/bainite (M/B) dual-phase microstructure and fully-refined effective grain size, which make the base metal to have high hardness and impact toughness. At the heat input of 20 kJ/cm, the impact toughness of CGHAZ of three kinds of microalloyed wear-resistant steels decreased in varying degrees. The main reasons for brittleness were coarse grain embrittlement and microstructural embrittlement. Ti-Nb-B microalloying can effectively prevent grain growth in CGHAZ while avoiding the formation of pearlite, small lump ferrite, and large grain carbides at the grain boundaries, thereby reducing the embrittlement of coarse grain and microstructure.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] On the role of Cu addition in toughness improvement of coarse grained heat affected zone in a low carbon high strength steel
    Xi, Xiaohui
    Wang, Jinliang
    Chan, Liqing
    Wang, Zhaodong
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (24) : 10863 - 10877
  • [22] High Toughness Independent of Low-Medium Heat Inputs in Coarse-Grain Heat-Affected Zone of a Designed HSLA Steel
    Luo, Xiang
    Chen, Xiaohua
    Wang, Zidong
    STEEL RESEARCH INTERNATIONAL, 2017, 88 (11)
  • [23] Mo Content Effect on Microstructures and Toughness of the Simulated Coarse-Grained Heat-Affected Zone of Weathering Bridge Steels
    Zhang, L. F.
    Wang, Y. F.
    Zhang, L.
    Wang, Q. F.
    Wang, T. S.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (07) : 5641 - 5651
  • [24] Effect of Heat Input on Toughness of Coarse-grained Heat-affected Zone of an Ultra Low Carbon Acicular Ferrite Steel
    Xia, Z. H.
    Wan, X. L.
    Tao, X. L.
    Wu, K. M.
    MATERIALS PROCESSING TECHNOLOGY II, PTS 1-4, 2012, 538-541 : 2003 - +
  • [25] Microstructure and Low-Temperature Toughness of Reheated Coarse-Grained Heat-Affected Zone of 06Ni9DR Steel
    Li, Liying
    Xiao, Wentao
    Niu, Shengyuan
    Gao, Yanwei
    Han, Bin
    Song, Lixin
    Li, Xueda
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, 34 (4) : 3416 - 3424
  • [26] Effect of Nb on Microstructure Evolution of Coarse-Grained Heat-Affected Zone with Large Heat Input Welding
    Tao, X. L.
    Wu, K. M.
    Wan, X. L.
    MATERIALS AND DESIGN, PTS 1-3, 2011, 284-286 : 1174 - 1179
  • [27] Relationship of the Microstructure and Toughness of the Coarse Grain Heat-Affected Zone of TiNbV Microalloyed Steels Based on Electron Backscatter Diffraction Analysis
    Yan, Han
    Zhao, Di
    Qi, Tongfu
    Leng, Xuesong
    Fu, Kuijun
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (01) : 201 - 210
  • [28] Study on Microstructure Characterization and Impact Toughness in the Reheated Coarse-Grained Heat Affected Zone of V-N Microalloyed Steel
    Wu, Hongyan
    Xia, Dengliang
    Ma, Heng
    Du, Yu
    Gao, Cairu
    Gao, Xiuhua
    Du, Linxiu
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (01) : 376 - 382
  • [29] Study on Microstructure Characterization and Impact Toughness in the Reheated Coarse-Grained Heat Affected Zone of V-N Microalloyed Steel
    Hongyan Wu
    Dengliang Xia
    Heng Ma
    Yu Du
    Cairu Gao
    Xiuhua Gao
    Linxiu Du
    Journal of Materials Engineering and Performance, 2022, 31 : 376 - 382
  • [30] Effect of Zr Addition on the Microstructure and Toughness of Coarse-Grained Heat-Affected Zone with High-Heat Input Welding Thermal Cycle in Low-Carbon Steel
    Shi, Ming-hao
    Yuan, Xiao-guang
    Huang, Hong-jun
    Zhang, Si
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (07) : 3160 - 3168