Notes on Planar Semimodular Lattices. VII. Resections of Planar Semimodular Lattices

被引:12
作者
Czedli, Gabor [1 ]
Graetzer, George [2 ]
机构
[1] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
[2] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 2013年 / 30卷 / 03期
关键词
Semimodular; Planar; Cover-preserving; Slim; Rectangular;
D O I
10.1007/s11083-012-9281-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A recent result of G. Cz,dli and E.T. Schmidt gives a construction of slim (planar) semimodular lattices from planar distributive lattices by adding elements, adding "forks". We give a construction that accomplishes the same by deleting elements, by "resections".
引用
收藏
页码:847 / 858
页数:12
相关论文
共 18 条
[1]  
Czedli G., 2013, LATTICE THE IN PRESS
[2]  
Czedli G., COMPOSITION SERIES G
[3]  
Czedli G., ARXIV12063679
[4]   Slim Semimodular Lattices. II. A Description by Patchwork Systems [J].
Czedli, Gabor ;
Schmidt, E. Tamas .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, 30 (02) :689-721
[5]   How many ways can two composition series intersect? [J].
Czedli, Gabor ;
Ozsvart, Laszlo ;
Udvari, Balazs .
DISCRETE MATHEMATICS, 2012, 312 (24) :3523-3536
[6]   Slim Semimodular Lattices. I. A Visual Approach [J].
Czedli, Gabor ;
Schmidt, E. Tamas .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2012, 29 (03) :481-497
[7]   Representing homomorphisms of distributive lattices as restrictions of congruences of rectangular lattices [J].
Czedli, Gabor .
ALGEBRA UNIVERSALIS, 2012, 67 (04) :313-345
[8]   The Jordan-Holder theorem with uniqueness for groups and semimodular lattices [J].
Czedli, Gabor ;
Schmidt, E. Tamas .
ALGEBRA UNIVERSALIS, 2011, 66 (1-2) :69-79
[9]   The Matrix of a Slim Semimodular Lattice [J].
Czedli, Gabor .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2012, 29 (01) :85-103
[10]  
Grätzer G, 2008, ACTA SCI MATH, V74, P37