ON THE DEGREE OF CERTAIN LOCAL L-FUNCTIONS

被引:2
作者
Anandavardhanan, U. K. [1 ,2 ]
Mondal, Amiya Kumar [2 ]
机构
[1] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
[2] Indian Inst Technol, Dept Math, Bombay 400076, Maharashtra, India
关键词
Asai L-function; symmetric square L-function; exterior square L-function; degree of a local L-function; SQUARE L-FUNCTIONS; PLANCHEREL MEASURES; REPRESENTATIONS; REDUCIBILITY;
D O I
10.2140/pjm.2015.276.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi be an irreducible supercuspidal representation of GL(n)(F), where F is a p-adic field. By a result of Bushnell and Kutzko, the group of unramified self-twists of pi has cardinality n/e, where e is the o(F)-period of the principal o(F)-order in M-n(F) attached to pi. This is the degree of the local Rankin-Selberg L-function L(s, pi x pi(boolean OR)). In this paper, we compute the degree of the Asai, symmetric square, and exterior square L-functions associated to pi. As an application, assuming p is odd, we compute the conductor of the Asai lift of a supercuspidal representation, where we also make use of the conductor formula for pairs of supercuspidal representations due to Bushnell, Henniart, and Kutzko (1998).
引用
收藏
页码:1 / 17
页数:17
相关论文
共 19 条
[1]  
Anandavardhanan UK, 2005, INT MATH RES NOTICES, V2005, P841
[2]   Distinguished representations and poles of twisted tensor L-functions [J].
Anandavardhanan, UK ;
Kable, AC ;
Tandon, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (10) :2875-2883
[3]   SYMMETRICAL SQUARE L-FUNCTIONS ON GL(R) [J].
BUMP, D ;
GINZBURG, D .
ANNALS OF MATHEMATICS, 1992, 136 (01) :137-205
[4]  
Bushnell C. J., 1993, ANN MATH STUD, V129
[5]   Local Rankin-Selberg convolutions for GLn:: Explicit conductor formula [J].
Bushnell, CJ ;
Henniart, GM ;
Kutzko, PC .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (03) :703-730
[6]   ON ZEROS OF THE TWISTED TENSOR L-FUNCTION [J].
FLICKER, YZ .
MATHEMATISCHE ANNALEN, 1993, 297 (02) :199-219
[7]  
GOLDBERG D, 1994, J REINE ANGEW MATH, V448, P65
[8]   Langlands correspondence and L-functions of symmetric and outside squares [J].
Henniart, Guy .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (04) :633-673
[9]   RANKIN-SELBERG CONVOLUTIONS [J].
JACQUET, H ;
PIATETSKIISHAPIRO, II ;
SHALIKA, JA .
AMERICAN JOURNAL OF MATHEMATICS, 1983, 105 (02) :367-464
[10]  
Jacquet H., 1990, AUTOMORPHIC FORMS SH, P143