Recent Advances in Electrolytes for Lithium-Sulfur Batteries

被引:776
作者
Zhang, Shiguo [1 ]
Ueno, Kazuhide [1 ]
Dokko, Kaoru [1 ]
Watanabe, Masayoshi [1 ]
机构
[1] Yokohama Natl Univ, Dept Chem & Biotechnol, Hodogaya ku, Yokohama, Kanagawa 2408501, Japan
基金
日本科学技术振兴机构;
关键词
LI-S BATTERIES; IONIC-LIQUID ELECTROLYTES; GEL POLYMER ELECTROLYTE; X-RAY-DIFFRACTION; CARBONATE-BASED ELECTROLYTE; COMPOSITE CATHODE MATERIALS; SULFONE-BASED ELECTROLYTES; GLYCOL) DIMETHYL ETHER; ELECTROCHEMICAL PROPERTIES; HIGH-CAPACITY;
D O I
10.1002/aenm.201500117
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The rapidly increasing demand for electrical and hybrid vehicles and stationary energy storage requires the development of "beyond Li-ion batteries" with high energy densities that exceed those of state-of-the-art Li-ion batteries. Li-S batteries, which have very high theoretical capacities and energy densities, are believed to be one of the most promising candidates. The sulfur-based electrochemical reaction requires novel electrolytes to replace the classical carbonate-based electrolyte systems inherited from Li-ion batteries because carbonates are incompatible with the intermediate polysulfides in Li-S batteries. In addition, the theoretical specific capacities and projected energy densities of Li-S batteries are difficult to achieve experimentally, mainly because of the electronically insulating nature of sulfur and lithium sulfide cathodes, and the shuttle effect; this is a serious issue associated with the dissolution and diffusion of soluble polysulfides in most potential electrolytes and causes rapid capacity fading. It is therefore highly desirable to explore, modify, and/or optimize electrolytes for Li-S batteries to address these issues and improve their capacities, cycling stabilities, rate performances, and energy densities. An overview of recent developments in electrolytes for Li-S batteries is provided with a focus on the chemistry of polysulfides in different electrolyte media, including polysulfide solubility and its relevance to battery performance.
引用
收藏
页数:28
相关论文
共 258 条
[1]   Crystallinity and morphology of PVdF-HFP-based gel electrolytes [J].
Abbrent, S ;
Plestil, J ;
Hlavata, D ;
Lindgren, J ;
Tegenfeldt, J ;
Wendsjö, Å .
POLYMER, 2001, 42 (04) :1407-1416
[2]   Characteristics of Li2S8-tetraglyme catholyte in a semi-liquid lithium-sulfur battery [J].
Agostini, Marco ;
Lee, Dong-Ju ;
Scrosati, Bruno ;
Sun, Yang Kook ;
Hassoun, Jusef .
JOURNAL OF POWER SOURCES, 2014, 265 :14-19
[3]   A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte [J].
Agostini, Marco ;
Aihara, Yuichi ;
Yamada, Takanobu ;
Scrosati, Bruno ;
Hassoun, Jusef .
SOLID STATE IONICS, 2013, 244 :48-51
[4]   Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview [J].
Agrawal, R. C. ;
Pandey, G. P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (22)
[5]   Ionic Liquids: Past, present and future [J].
Angell, C. Austen ;
Ansari, Younes ;
Zhao, Zuofeng .
FARADAY DISCUSSIONS, 2012, 154 :9-27
[6]  
Assary R. S., 2014, J PHYS CHEM C
[7]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[8]   Fluorinated Electrolytes for Li-S Battery: Suppressing the Self-Discharge with an Electrolyte Containing Fluoroether Solvent [J].
Azimi, Nasim ;
Xue, Zheng ;
Rago, Nancy Dietz ;
Takoudis, Christos ;
Gordin, Mikhail L. ;
Song, Jiangxuan ;
Wang, Donghai ;
Zhang, Zhengcheng .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (01) :A64-A68
[9]   Improved performance of lithium-sulfur battery with fluorinated electrolyte [J].
Azimi, Nasim ;
Weng, Wei ;
Takoudis, Christos ;
Zhang, Zhengcheng .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 37 :96-99
[10]   Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries [J].
Barchasz, Celine ;
Lepretre, Jean-Claude ;
Patoux, Sebastien ;
Alloin, Fannie .
ELECTROCHIMICA ACTA, 2013, 89 :737-743