Finite-difference approximation of a one-dimensional Hamilton-Jacobi/elliptic system arising in superconductivity

被引:1
作者
Briggs, AJ [1 ]
Claisse, JR [1 ]
Elliott, CM [1 ]
机构
[1] Univ Sussex, Ctr Math Anal & Its Applicat, Brighton BN1 9QH, E Sussex, England
基金
英国工程与自然科学研究理事会;
关键词
Hamilton-Jacobi equation; elliptic-hyperbolic system; vortex density; evolution; superconductivity; finite difference schemes; viscosity solutions;
D O I
10.1093/imanum/22.1.89
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite-difference approximations to an elliptic-hyperbolic system arising in vortex density models for type II superconductors are studied. The problem can be formulated as a non-local Hamilton-Jacobi equation on a bounded domain with zero Neumann boundary conditions. Monotone schemes are defined and shown to be stable. An L-infinity error bound is proved for the approximations of the unique viscosity solution.
引用
收藏
页码:89 / 131
页数:43
相关论文
共 24 条
[1]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[2]   FULLY NONLINEAR NEUMANN TYPE BOUNDARY-CONDITIONS FOR 1ST-ORDER HAMILTON-JACOBI EQUATIONS [J].
BARLES, G ;
LIONS, PL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 16 (02) :143-153
[3]  
Barles G., 1994, Solutions de viscosite des equations de Hamilton-Jacobi, V17
[4]   Computer modelling of type II superconductors in applications [J].
Barnes, G ;
McCulloch, M ;
Dew-Hughes, D .
SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 1999, 12 (08) :518-522
[5]  
BRIGGS AJ, 1999, 9909 U SUSS
[6]  
Chapman S. J., 1996, EUR J APPL MATH, V7, P97, DOI 10.1017/S0956792500002242
[7]   A MEAN-FIELD MODEL OF SUPERCONDUCTING VORTICES IN 3 DIMENSIONS [J].
CHAPMAN, SJ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1995, 55 (05) :1259-1274
[8]   A hierarchy of models for type-II superconductors [J].
Chapman, SJ .
SIAM REVIEW, 2000, 42 (04) :555-598
[9]  
CLAISSE JR, 2000, THESIS SUSSEX U
[10]  
CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8