Backmapping coarse-grained macromolecules: An efficient and versatile machine learning approach

被引:62
作者
Li, Wei [1 ]
Burkhart, Craig [2 ]
Polinska, Patrycja [3 ]
Harmandaris, Vagelis [4 ,5 ,6 ]
Doxastakis, Manolis [1 ]
机构
[1] Univ Tennessee, Dept Chem & Biomol Engn, Knoxville, TN 37996 USA
[2] Goodyear Tire & Rubber Co, Akron, OH 44305 USA
[3] Goodyear Innovat Ctr Luxembourg, Ave Gordon Smith, L-7750 Colmar Berg, Luxembourg
[4] Univ Crete, Dept Appl Math, GR-71110 Iraklion, Greece
[5] IACM FORTH, GR-71110 Iraklion, Greece
[6] Cyprus Inst, Computat Based Sci & Technol Res Ctr, CY-2121 Nicosia, Cyprus
关键词
MONTE-CARLO-SIMULATION; CIS-1,4 POLYISOPRENE MELTS; REVERSE-MAPPING PROCEDURE; MODELS; POLYMERS; DYNAMICS; CHAIN; RECONSTRUCTION; POLYSTYRENE; BACK;
D O I
10.1063/5.0012320
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multiscale modeling of polymers exchanges information between coarse and fine representations of molecules to capture material properties over a wide range of spatial and temporal scales. Restoring details at a finer scale requires us to generate information following embedded physics and statistics of the models at two different levels of description. Techniques designed to address this persistent challenge balance among accuracy, efficiency, and general applicability. In this work, we present an image-based approach for structural backmapping from coarse-grained to atomistic models with cis-1,4 polyisoprene melts as an illustrative example. Through machine learning, we train conditional generative adversarial networks on the correspondence between configurations at the levels considered. The trained model is subsequently applied to provide predictions of atomistic structures from the input coarse-grained configurations. The effect of different data representation schemes on training and prediction quality is examined. Our proposed backmapping approach shows remarkable efficiency and transferability over different molecular weights in the melt based on training sets constructed from oligomeric compounds. We anticipate that this versatile backmapping approach can be readily extended to other complex systems to provide high-fidelity initial configurations with minimal human intervention.
引用
收藏
页数:8
相关论文
共 55 条
[1]  
[Anonymous], 2009, PRACT ASP COMP CHEM, DOI DOI 10.1007/978-90-481-2687-3_4
[2]  
[Anonymous], 2000, ADV POLYM SCI
[3]   Multiscale modeling of biomolecular systems: in serial and in parallel [J].
Ayton, Gary S. ;
Noid, Will G. ;
Voth, Gregory A. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2007, 17 (02) :192-198
[4]   Systematic coarse-graining methods for soft matter simulations - a review [J].
Brini, Emiliano ;
Algaer, Elena A. ;
Ganguly, Pritam ;
Li, Chunli ;
Rodriguez-Ropero, Francisco ;
van der Vegt, Nico F. A. .
SOFT MATTER, 2013, 9 (07) :2108-2119
[5]   Mechanism of Activation of Protein Kinase JAK2 by the Growth Hormone Receptor [J].
Brooks, Andrew J. ;
Dai, Wei ;
O'Mara, Megan L. ;
Abankwa, Daniel ;
Chhabra, Yash ;
Pelekanos, Rebecca A. ;
Gardon, Olivier ;
Tunny, Kathryn A. ;
Blucher, Kristopher M. ;
Morton, Craig J. ;
Parker, Michael W. ;
Sierecki, Emma ;
Gambin, Yann ;
Gomez, Guillermo A. ;
Alexandrov, Kirill ;
Wilson, Ian A. ;
Doxastakis, Manolis ;
Mark, Alan E. ;
Waters, Michael J. .
SCIENCE, 2014, 344 (6185) :710-+
[6]   An automatic coarse-graining and fine-graining simulation method: Application on polyethylene [J].
Chen, Li-Jun ;
Qian, Hu-Jun ;
Lu, Zhong-Yuan ;
Li, Ze-Sheng ;
Sun, Chia-Chung .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (47) :24093-24100
[7]   Towards exact molecular dynamics simulations with machine-learned force fields [J].
Chmiela, Stefan ;
Sauceda, Huziel E. ;
Mueller, Klaus-Robert ;
Tkatchenko, Alexandre .
NATURE COMMUNICATIONS, 2018, 9
[8]   Chain and local dynamics of polyisoprene as probed by experiments and computer simulations [J].
Doxastakis, M ;
Theodorou, DN ;
Fytas, G ;
Kremer, F ;
Faller, R ;
Müller-Plathe, F ;
Hadjichristidis, N .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (13) :6883-6894
[9]   Atomistic Monte Carlo simulation of cis-1,4 polyisoprene melts.: I.: Single temperature end-bridging Monte Carlo simulations [J].
Doxastakis, M ;
Mavrantzas, VG ;
Theodorou, DN .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (24) :11339-11351
[10]   Atomistic Monte Carlo simulation of cis-1,4 polyisoprene melts.: II.: Parallel tempering end-bridging Monte Carlo simulations [J].
Doxastakis, M ;
Mavrantzas, VG ;
Theodorou, DN .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (24) :11352-11361