Achieving linear scaling for the electronic quantum coulomb problem

被引:409
作者
Strain, MC
Scuseria, GE
Frisch, MJ
机构
[1] RICE UNIV,RICE QUANTUM INST,CTR NANOSCALE SCI & TECHNOL,HOUSTON,TX 77005
[2] RICE UNIV,DEPT CHEM,HOUSTON,TX 77005
[3] LORENTZIAN INC,NEW HAVEN,CT 06473
关键词
D O I
10.1126/science.271.5245.51
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The computation of the electron-electron Coulomb interaction is one of the limiting factors in ab initio electronic structure calculations. The computational requirements for calculating the Coulomb term with commonly used analytic integration techniques between Gaussian functions prohibit electronic structure calculations of large molecules and other nanosystems. Here, it is shown that a generalization of the fast multipole method to Gaussian charge distributions dramatically reduces the computational requirements of the electronic quantum Coulomb problem. Benchmark calculations on graphitic sheets containing more than 400 atoms show near linear scaling together with high speed and accuracy.
引用
收藏
页码:51 / 53
页数:3
相关论文
共 13 条
[1]   ELECTRONIC WAVE FUNCTIONS .1. A GENERAL METHOD OF CALCULATION FOR THE STATIONARY STATES OF ANY MOLECULAR SYSTEM [J].
BOYS, SF .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1950, 200 (1063) :542-554
[2]   ATOMIC LEVEL SIMULATIONS ON A MILLION PARTICLES - THE CELL MULTIPOLE METHOD FOR COULOMB AND LONDON NONBOND INTERACTIONS [J].
DING, HQ ;
KARASAWA, N ;
GODDARD, WA .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (06) :4309-4315
[3]  
FRISCH MJ, GAUSSIAN 95 DEV VERS
[4]   THE PRISM ALGORITHM FOR 2-ELECTRON INTEGRALS [J].
GILL, PMW ;
POPLE, JA .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1991, 40 (06) :753-772
[5]   FAST ALGORITHMS FOR CLASSICAL PHYSICS [J].
GREENGARD, L .
SCIENCE, 1994, 265 (5174) :909-914
[6]   A FAST ALGORITHM FOR PARTICLE SIMULATIONS [J].
GREENGARD, L ;
ROKHLIN, V .
JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 73 (02) :325-348
[7]  
Greengard L., 1988, The rapid evaluation of potential fields in particle systems
[8]   ERROR-ESTIMATES FOR THE FAST MULTIPOLE METHOD .1. THE 2-DIMENSIONAL CASE [J].
PETERSEN, HG ;
SOELVASON, D ;
PERRAM, JW ;
SMITH, ER .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 448 (1934) :389-400
[9]   THE VERY FAST MULTIPOLE METHOD [J].
PETERSEN, HG ;
SOELVASON, D ;
PERRAM, JW ;
SMITH, ER .
JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (10) :8870-8876
[10]   PERFORMANCE OF FAST MULTIPOLE METHODS FOR CALCULATING ELECTROSTATIC INTERACTIONS IN BIOMACROMOLECULAR SIMULATIONS [J].
SHIMADA, J ;
KANEKO, H ;
TAKADA, T .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1994, 15 (01) :28-43