On the isomorphisms and automorphism groups of circulants

被引:19
作者
Huang, QX [1 ]
Meng, JX [1 ]
机构
[1] XINJIANG UNIV,DEPT MATH,XINJIANG URUMUQI 830046,PEOPLES R CHINA
关键词
D O I
10.1007/BF01858452
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Denote by C-n(S) the circulant graph (or digraph). Let M be a minimal generating element subset of Z(n), the cyclic group of integers module n, and (M) over tilde = {m, -m\m is an element of M}. In this paper, we discuss the problems about the automorphism group and isomorphisms of C-n(S). When M subset of or equal to S subset of or equal to (M) over tilde, we determine the automorphism group of C-n(S) and prove that for any T subset of or equal to Z(n), C-n(S) congruent to C-n(T) if and only if T = lambda S, where lambda is an integer relatively prime to n. The automorphism groups and isomorphisms of some other types of circulant graphs (or digraphs) are also considered. In the last section of this paper, we give a relation between the isomorphisms and the automorphism groups of circulants.
引用
收藏
页码:179 / 187
页数:9
相关论文
共 10 条
[1]   ISOMORPHISM OF CIRCULANT GRAPHS AND DIGRAPHS [J].
ALSPACH, B ;
PARSONS, TD .
DISCRETE MATHEMATICS, 1979, 25 (02) :97-108
[2]  
ALSPACH B, 1977, ANN NY ACAD SCI HUNG, V29, P329
[3]  
[Anonymous], 1967, J. Combinatorial Theory
[4]  
Biggs N., 1974, ALGEBRAIC GRAPH THEO
[5]  
ELSPAS B, 1968, THEORY CELLULAR LOGI
[6]  
Elspas B., 1970, J COMBINATORIAL THEO, V9, P297, DOI 10.1016/S0021-9800(70)80068-0
[7]  
HUANG QX, 1994, AUTOMORPHISM GROUPS
[8]  
SUN L, 1988, ANN MATH A, V9, P259
[9]   NOTE ON ADAMS CONJECTURE [J].
TOIDA, S .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1977, 23 (2-3) :239-246
[10]  
TURNER J, 1967, J COMB THEORY, V2, P136