Cancer Metabolism: New Validated Targets for Drug Discovery

被引:35
作者
Sotgia, Federica [1 ,2 ]
Martinez-Outschoorn, Ubaldo E. [3 ]
Lisanti, Michael P. [1 ,2 ]
机构
[1] Univ Manchester, Fac Inst Canc Sci, Manchester Breast Ctr, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Fac Inst Canc Sci, Breakthrough Breast Canc Res Unit, Manchester M13 9PL, Lancs, England
[3] Thomas Jefferson Univ, Kimmel Canc Ctr, Philadelphia, PA 19107 USA
基金
欧洲研究理事会;
关键词
cancer metabolism; therapeutic targets; drug discovery; oncogenes; tumor suppressors; oxidative stress; glycolysis; cancer associated fibroblast; tumor microenvironment; metabolic symbiosis; anti-angiogenic therapy; OXIDATIVE MITOCHONDRIAL METABOLISM; TUMOR-STROMA COEVOLUTION; KAPPA-B ACTIVATION; BREAST-CANCER; LACTATE PRODUCTION; OVARIAN-CANCER; AUTOPHAGY; FIBROBLASTS; STRESS; MICROENVIRONMENT;
D O I
10.18632/oncotarget.1182
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Recent studies in cancer metabolism directly implicate catabolic fibroblasts as a new rich source of i) energy and ii) biomass, for the growth and survival of anabolic cancer cells. Conversely, anabolic cancer cells upregulate oxidative mitochondrial metabolism, to take advantage of the abundant fibroblast fuel supply. This simple model of "metabolic-symbiosis" has now been independently validated in several different types of human cancers, including breast, ovarian, and prostate tumors. Biomarkers of metabolic-symbiosis are excellent predictors of tumor recurrence, metastasis, and drug resistance, as well as poor patient survival. New pre-clinical models of metabolic-symbiosis have been generated and they genetically validate that catabolic fibroblasts promote tumor growth and metastasis. Over 30 different stable lines of catabolic fibroblasts and >10 different lines of anabolic cancer cells have been created and are well-characterized. For example, catabolic fibroblasts harboring ATG16L1 increase tumor cell metastasis by >11.5-fold, despite the fact that genetically identical cancer cells were used. Taken together, these studies provide >40 novel validated targets, for new drug discovery and anti-cancer therapy. Since anabolic cancer cells amplify their capacity for oxidative mitochondrial metabolism, we should consider therapeutically targeting mitochondrial biogenesis and OXPHOS in epithelial cancer cells. As metabolic-symbiosis promotes drug-resistance and may represent the escape mechanism during anti-angiogenic therapy, new drugs targeting metabolic-symbiosis may also be effective in cancer patients with recurrent and advanced metastatic disease.
引用
收藏
页码:1309 / 1316
页数:8
相关论文
共 61 条
  • [1] Compartment-specific activation of PPAR governs breast cancer tumor growth, via metabolic reprogramming and symbiosis
    Avena, Paola
    Anselmo, Wanda
    Whitaker-Menezes, Diana
    Wang, Chenguang
    Pestell, Richard G.
    Lamb, Rebecca S.
    Hulit, James
    Casaburi, Ivan
    Ando, Sebastiano
    Martinez-Outschoorn, Ubaldo E.
    Lisanti, Michael P.
    Sotgia, Federica
    [J]. CELL CYCLE, 2013, 12 (09) : 1360 - 1370
  • [2] Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth Understanding the aging and cancer connection
    Balliet, Renee M.
    Capparelli, Claudia
    Guido, Carmela
    Pestell, Timothy G.
    Martinez-Outschoorn, Ubaldo E.
    Lin, Zhao
    Whitaker-Menezes, Diana
    Chiavarina, Barbara
    Pestell, Richard G.
    Howell, Anthony
    Sotgia, Federica
    Lisanti, Michael P.
    [J]. CELL CYCLE, 2011, 10 (23) : 4065 - 4073
  • [3] Impact of Tumor Microenvironment and Epithelial Phenotypes on Metabolism in Breast Cancer
    Brauer, Heather Ann
    Makowski, Liza
    Hoadley, Katherine A.
    Casbas-Hernandez, Patricia
    Lang, Lindsay J.
    Roman-Perez, Erick
    D'Arcy, Monica
    Freemerman, Alex J.
    Perou, Charles M.
    Troester, Melissa A.
    [J]. CLINICAL CANCER RESEARCH, 2013, 19 (03) : 571 - 585
  • [4] CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis
    Capparelli, Claudia
    Chiavarina, Barbara
    Whitaker-Menezes, Diana
    Pestell, Timothy G.
    Pestell, Richard G.
    Hulit, James
    Ando, Sebastiano
    Howell, Anthony
    Martinez-Outschoorn, Ubaldo E.
    Sotgia, Federica
    Lisanti, Michael P.
    [J]. CELL CYCLE, 2012, 11 (19) : 3599 - 3610
  • [5] CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth
    Capparelli, Claudia
    Whitaker-Menezes, Diana
    Guido, Carmela
    Balliet, Renee
    Pestell, Timothy G.
    Howell, Anthony
    Sneddon, Sharon
    Pestell, Richard G.
    Martinez-Outschoorn, Ubaldo
    Lisanti, Michael P.
    Sotgia, Federica
    [J]. CELL CYCLE, 2012, 11 (12) : 2272 - 2284
  • [6] Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production
    Capparelli, Claudia
    Guido, Carmela
    Whitaker-Menezes, Diana
    Bonuccelli, Gloria
    Balliet, Renee
    Pestell, Timothy G.
    Goldberg, Allison F.
    Pestell, Richard G.
    Howell, Anthony
    Sneddon, Sharon
    Birbe, Ruth
    Tsirigos, Aristotelis
    Martinez-Outschoorn, Ubaldo
    Sotgia, Federica
    Lisanti, Michael P.
    [J]. CELL CYCLE, 2012, 11 (12) : 2285 - 2302
  • [7] Metabolic remodeling of the tumor microenvironment Migration stimulating factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growth
    Carito, Valentina
    Bonuccelli, Gloria
    Martinez-Outschoorn, Ubaldo E.
    Whitaker-Menezes, Diana
    Caroleo, Maria Cristina
    Cione, Erika
    Howell, Anthony
    Pestell, Richard G.
    Lisanti, Michael P.
    Sotgia, Federica
    [J]. CELL CYCLE, 2012, 11 (18) : 3403 - 3414
  • [8] Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis
    Castello-Cros, Remedios
    Bonuccelli, Gloria
    Molchansky, Alex
    Capozza, Franco
    Witkiewicz, Agnieszka K.
    Birbe, Ruth C.
    Howell, Anthony
    Pestell, Richard G.
    Whitaker-Menezes, Diana
    Sotgia, Federica
    Lisanti, Michael P.
    [J]. CELL CYCLE, 2011, 10 (12) : 2021 - 2034
  • [9] Chaudhri VK, 2013, MOL CANC RES
  • [10] Chiavarina B, 2011, CANC BIOL THER, V12