Cancer Metabolism: New Validated Targets for Drug Discovery

被引:35
作者
Sotgia, Federica [1 ,2 ]
Martinez-Outschoorn, Ubaldo E. [3 ]
Lisanti, Michael P. [1 ,2 ]
机构
[1] Univ Manchester, Fac Inst Canc Sci, Manchester Breast Ctr, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Fac Inst Canc Sci, Breakthrough Breast Canc Res Unit, Manchester M13 9PL, Lancs, England
[3] Thomas Jefferson Univ, Kimmel Canc Ctr, Philadelphia, PA 19107 USA
基金
欧洲研究理事会;
关键词
cancer metabolism; therapeutic targets; drug discovery; oncogenes; tumor suppressors; oxidative stress; glycolysis; cancer associated fibroblast; tumor microenvironment; metabolic symbiosis; anti-angiogenic therapy; OXIDATIVE MITOCHONDRIAL METABOLISM; TUMOR-STROMA COEVOLUTION; KAPPA-B ACTIVATION; BREAST-CANCER; LACTATE PRODUCTION; OVARIAN-CANCER; AUTOPHAGY; FIBROBLASTS; STRESS; MICROENVIRONMENT;
D O I
10.18632/oncotarget.1182
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Recent studies in cancer metabolism directly implicate catabolic fibroblasts as a new rich source of i) energy and ii) biomass, for the growth and survival of anabolic cancer cells. Conversely, anabolic cancer cells upregulate oxidative mitochondrial metabolism, to take advantage of the abundant fibroblast fuel supply. This simple model of "metabolic-symbiosis" has now been independently validated in several different types of human cancers, including breast, ovarian, and prostate tumors. Biomarkers of metabolic-symbiosis are excellent predictors of tumor recurrence, metastasis, and drug resistance, as well as poor patient survival. New pre-clinical models of metabolic-symbiosis have been generated and they genetically validate that catabolic fibroblasts promote tumor growth and metastasis. Over 30 different stable lines of catabolic fibroblasts and >10 different lines of anabolic cancer cells have been created and are well-characterized. For example, catabolic fibroblasts harboring ATG16L1 increase tumor cell metastasis by >11.5-fold, despite the fact that genetically identical cancer cells were used. Taken together, these studies provide >40 novel validated targets, for new drug discovery and anti-cancer therapy. Since anabolic cancer cells amplify their capacity for oxidative mitochondrial metabolism, we should consider therapeutically targeting mitochondrial biogenesis and OXPHOS in epithelial cancer cells. As metabolic-symbiosis promotes drug-resistance and may represent the escape mechanism during anti-angiogenic therapy, new drugs targeting metabolic-symbiosis may also be effective in cancer patients with recurrent and advanced metastatic disease.
引用
收藏
页码:1309 / 1316
页数:8
相关论文
共 61 条
[1]   Compartment-specific activation of PPAR governs breast cancer tumor growth, via metabolic reprogramming and symbiosis [J].
Avena, Paola ;
Anselmo, Wanda ;
Whitaker-Menezes, Diana ;
Wang, Chenguang ;
Pestell, Richard G. ;
Lamb, Rebecca S. ;
Hulit, James ;
Casaburi, Ivan ;
Ando, Sebastiano ;
Martinez-Outschoorn, Ubaldo E. ;
Lisanti, Michael P. ;
Sotgia, Federica .
CELL CYCLE, 2013, 12 (09) :1360-1370
[2]   Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth Understanding the aging and cancer connection [J].
Balliet, Renee M. ;
Capparelli, Claudia ;
Guido, Carmela ;
Pestell, Timothy G. ;
Martinez-Outschoorn, Ubaldo E. ;
Lin, Zhao ;
Whitaker-Menezes, Diana ;
Chiavarina, Barbara ;
Pestell, Richard G. ;
Howell, Anthony ;
Sotgia, Federica ;
Lisanti, Michael P. .
CELL CYCLE, 2011, 10 (23) :4065-4073
[3]   Impact of Tumor Microenvironment and Epithelial Phenotypes on Metabolism in Breast Cancer [J].
Brauer, Heather Ann ;
Makowski, Liza ;
Hoadley, Katherine A. ;
Casbas-Hernandez, Patricia ;
Lang, Lindsay J. ;
Roman-Perez, Erick ;
D'Arcy, Monica ;
Freemerman, Alex J. ;
Perou, Charles M. ;
Troester, Melissa A. .
CLINICAL CANCER RESEARCH, 2013, 19 (03) :571-585
[4]   CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, without an increase in neo-angiogenesis [J].
Capparelli, Claudia ;
Chiavarina, Barbara ;
Whitaker-Menezes, Diana ;
Pestell, Timothy G. ;
Pestell, Richard G. ;
Hulit, James ;
Ando, Sebastiano ;
Howell, Anthony ;
Martinez-Outschoorn, Ubaldo E. ;
Sotgia, Federica ;
Lisanti, Michael P. .
CELL CYCLE, 2012, 11 (19) :3599-3610
[5]   CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth [J].
Capparelli, Claudia ;
Whitaker-Menezes, Diana ;
Guido, Carmela ;
Balliet, Renee ;
Pestell, Timothy G. ;
Howell, Anthony ;
Sneddon, Sharon ;
Pestell, Richard G. ;
Martinez-Outschoorn, Ubaldo ;
Lisanti, Michael P. ;
Sotgia, Federica .
CELL CYCLE, 2012, 11 (12) :2272-2284
[6]   Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis, via glycolysis and ketone production [J].
Capparelli, Claudia ;
Guido, Carmela ;
Whitaker-Menezes, Diana ;
Bonuccelli, Gloria ;
Balliet, Renee ;
Pestell, Timothy G. ;
Goldberg, Allison F. ;
Pestell, Richard G. ;
Howell, Anthony ;
Sneddon, Sharon ;
Birbe, Ruth ;
Tsirigos, Aristotelis ;
Martinez-Outschoorn, Ubaldo ;
Sotgia, Federica ;
Lisanti, Michael P. .
CELL CYCLE, 2012, 11 (12) :2285-2302
[7]   Metabolic remodeling of the tumor microenvironment Migration stimulating factor (MSF) reprograms myofibroblasts toward lactate production, fueling anabolic tumor growth [J].
Carito, Valentina ;
Bonuccelli, Gloria ;
Martinez-Outschoorn, Ubaldo E. ;
Whitaker-Menezes, Diana ;
Caroleo, Maria Cristina ;
Cione, Erika ;
Howell, Anthony ;
Pestell, Richard G. ;
Lisanti, Michael P. ;
Sotgia, Federica .
CELL CYCLE, 2012, 11 (18) :3403-3414
[8]   Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis [J].
Castello-Cros, Remedios ;
Bonuccelli, Gloria ;
Molchansky, Alex ;
Capozza, Franco ;
Witkiewicz, Agnieszka K. ;
Birbe, Ruth C. ;
Howell, Anthony ;
Pestell, Richard G. ;
Whitaker-Menezes, Diana ;
Sotgia, Federica ;
Lisanti, Michael P. .
CELL CYCLE, 2011, 10 (12) :2021-2034
[9]  
Chaudhri VK, 2013, MOL CANC RES
[10]  
Chiavarina B, 2011, CANC BIOL THER, V12