A wavelet-based hybrid neural network for short-term electricity prices forecasting

被引:30
|
作者
Saadaoui, Foued [1 ,2 ]
Rabbouch, Hana [2 ,3 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Stat, POB 80203, Jeddah, Saudi Arabia
[2] Univ Monastir, Lab Algebre Theorie Nombres & Anal Nonlineaire, Fac Sci, Monastir 5019, Tunisia
[3] Univ Tunis, Inst Super Gest Tunis, Tunis 2000, Tunisia
关键词
Forecasting; Wavelets; Feedforward neural networks; Nonlinear fitting; Hybrid models; Electricity spot prices; MARKET; MODEL; PREDICTABILITY; LOAD; ANN;
D O I
10.1007/s10462-019-09702-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Forecasting is a very important and difficult task for various economic activities. Despite the great evolution of time series modeling, forecasters are still in the hunt for better strategies to improve mathematical models and come up with more accurate predictions. In this respect, several new models, mixing autoregressive processes to artificial neural networks (ANNs), have recently emerged. This is particularly the case for energy economics, where old forecasting tools are replaced by new hybrid strategies. Along the same lines, this paper aims to define a wavelet-based hybridization, involving nonlinear smooth functions, autoregressive fractionally integrated moving average (ARFIMA) model and feedforward ANNs, for electricity spot prices forecasting. The use of the wavelet decomposition in this model allows to characterize certain patterns of power time series, such as the nonlinear trend and multiple seasonal effects, and to exactly extrapolate them over the time scale. In fact, such patterns have already been pointed out as potential causes of the ANN's inaccuracy. An ARFIMA-ANN model is then used to forecast the resulting irregular component. In the last stage, the smooth and irregular components are recombined to constitute the forecasted price. We will demonstrate the cost-effectiveness of the proposed method using hourly power prices from the Nord Pool Exchange. The testing time series consists of 52,614 observations and corresponds to the period ranging from 2012 to 2017. The results show that the new method is able to provide better interval forecasting than four benchmark models.
引用
收藏
页码:649 / 669
页数:21
相关论文
共 50 条
  • [1] A wavelet-based hybrid neural network for short-term electricity prices forecasting
    Foued Saâdaoui
    Hana Rabbouch
    Artificial Intelligence Review, 2019, 52 : 649 - 669
  • [2] Neural networks and wavelet transform for short-term electricity prices forecasting
    Catalão, J.P.S.
    Pousinho, H.M.I.
    Mendes, Vmf
    Engineering Intelligent Systems, 2010, 18 (02): : 105 - 112
  • [3] Short-term wind power forecasting using wavelet-based neural network
    Abhinav, Rishabh
    Pindoriya, Naran M.
    Wu, Jianzhong
    Long, Chao
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 455 - 460
  • [4] An artificial neural network approach for short-term electricity prices forecasting
    Catalao, J. P. S.
    Mariano, S. J. P. S.
    Mendes, V. M. F.
    Ferreira, L. A. F. M.
    2007 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS APPLICATIONS TO POWER SYSTEMS, VOLS 1 AND 2, 2007, : 411 - +
  • [5] An artificial neural network approach for short-term electricity prices forecasting
    Catalao, J. P. S.
    Mariano, S. J. P. S.
    Mendes, V. M. F.
    Ferreira, L. A. F. M.
    ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 2007, 15 (01): : 15 - 23
  • [6] Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Electricity Prices Forecasting
    Catalao, J. P. S.
    Pousinho, H. M. I.
    Mendes, V. M. F.
    2011 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING, 2011,
  • [7] Hybrid Wavelet-PSO-ANFIS Approach for Short-Term Electricity Prices Forecasting
    Catalao, J. P. S.
    Pousinho, H. M. I.
    Mendes, V. M. F.
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (01) : 137 - 144
  • [8] Short-term electricity prices forecasting in a competitive market: A neural network approach
    Catalao, J. P. S.
    Mariano, S. J. P. S.
    Mendes, V. M. F.
    Ferreira, L. A. F. M.
    ELECTRIC POWER SYSTEMS RESEARCH, 2007, 77 (10) : 1297 - 1304
  • [9] Short-Term Wind Power Forecasting using Wavelet-based Hybrid Recurrent Dynamic Neural Networks
    Singh P.K.
    Singh N.
    Negi R.
    International Journal of Performability Engineering, 2019, 15 (07) : 1772 - 1782
  • [10] Short-Term Hybrid Probabilistic Forecasting Model for Electricity Market Prices
    Campos, Vasco
    Osorio, Gerardo
    Shafie-khah, Miadreza
    Lotfi, Mohamed
    Catalao, Joao P. S.
    2018 TWENTIETH INTERNATIONAL MIDDLE EAST POWER SYSTEMS CONFERENCE (MEPCON), 2018, : 962 - 967