Musielak-Orlicz Besov-type and Triebel-Lizorkin-type spaces

被引:36
作者
Yang, Dachun [1 ]
Yuan, Wen [1 ]
Zhuo, Ciqiang [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
来源
REVISTA MATEMATICA COMPLUTENSE | 2014年 / 27卷 / 01期
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Musielak-Orlicz function; Besov space; Triebel-Lizorkin space; Atom; Molecule; Embedding; Fourier multiplier; Pseudo-differential operator; HARDY-SPACES; MORREY SPACES; POINTWISE MULTIPLIERS; VARIABLE SMOOTHNESS; DECOMPOSITIONS; BMO; INTERPOLATION; BOUNDEDNESS; OPERATORS; LIPSCHITZ;
D O I
10.1007/s13163-013-0120-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let be two Musielak-Orlicz functions that, on the space variable, belong to the Muckenhoupt class uniformly on the time variable. In this paper, the authors introduce Musielak-Orlicz Besov-type spaces and Musielak-Orlicz Triebel-Lizorkin-type spaces , and establish their -transform characterizations in the sense of Frazier and Jawerth. The embedding and lifting properties, characterizations via Peetre maximal functions, local means, Lusin area functions, smooth atomic and molecular decompositions of these spaces are also presented. As applications, the boundedness on these spaces of Fourier multipliers with symbols satisfying some generalized Hormander condition are obtained. These spaces have wide generality, which unify Musielak-Orlicz Hardy spaces, unweighted and weighted Besov(-type) and Triebel-Lizorkin(-type) spaces as special cases.
引用
收藏
页码:93 / 157
页数:65
相关论文
共 50 条
[21]   Variable Triebel-Lizorkin-Type Spaces [J].
Drihem, Douadi .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) :1817-1856
[22]   CAFFARELLI-KOHN-NIRENBERG INEQUALITIES FOR BESOV AND TRIEBEL-LIZORKIN-TYPE SPACES [J].
Drihem, D. .
EURASIAN MATHEMATICAL JOURNAL, 2023, 14 (02) :24-57
[23]   Non-smooth atomic decomposition of variable 2-microlocal Besov-type and Triebel-Lizorkin-type spaces [J].
Goncalves, Helena F. .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (03)
[24]   Besov-type and Triebel–Lizorkin-type spaces associated with heat kernels [J].
Liguang Liu ;
Dachun Yang ;
Wen Yuan .
Collectanea Mathematica, 2016, 67 :247-310
[25]   Local Hardy spaces of Musielak-Orlicz type and their applications [J].
Yang DaChun ;
Yang SiBei .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (08) :1677-1720
[26]   Pointwise characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type [J].
Alvarado, Ryan ;
Wang, Fan ;
Yang, Dachun ;
Yuan, Wen .
STUDIA MATHEMATICA, 2023, 268 (02) :121-166
[27]   Fourier Multipliers on Triebel-Lizorkin-Type Spaces [J].
Yang, Dachun ;
Yuan, Wen ;
Zhuo, Ciqiang .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2012,
[28]   Matrix-weighted Besov-type and Triebel-Lizorkin-type spaces I: Ap-dimensions of matrix weights and'-transform characterizations [J].
Bu, Fan ;
Hytonen, Tuomas ;
Yang, Dachun ;
Yuan, Wen .
MATHEMATISCHE ANNALEN, 2025,
[29]   Local Hardy spaces of Musielak-Orlicz type and their applications [J].
YANG DaChun & YANG SiBei School of Mathematical Sciences .
ScienceChina(Mathematics), 2012, 55 (08) :1676-1719
[30]   Local Hardy spaces of Musielak-Orlicz type and their applications [J].
DaChun Yang ;
SiBei Yang .
Science China Mathematics, 2012, 55 :1677-1720