A new design for Si wears double jackets used as a high-performance lithium-ion battery anode

被引:59
|
作者
Wu, Jinlong [1 ,2 ,3 ]
Liu, Junhao [1 ,2 ]
Wang, Zhi [1 ,2 ]
Gong, Xuzhong [1 ,2 ]
Wang, Yong [3 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, Natl Engn Lab Hydromet Cleaner Prod Technol, Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Capital Normal Univ, Dept Chem, Beijing 100048, Peoples R China
基金
中国国家自然科学基金;
关键词
Silicon; Interfacial binding force; Lithium-ion battery; Long cycling; Fast charge/discharge; REDUCED GRAPHENE OXIDE; SILICON; STORAGE; SPECTROSCOPY; CHALLENGES; FOAM;
D O I
10.1016/j.cej.2019.03.253
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Since most active nanoparticles (Si, Sn, TiO2, SnO2, etc.) are simply decorated on the graphene surface instead of being contained between the graphene nanoarray, they are easily peeled off during the long-term cycling. A new Si-based double jackets nanostructure synthesized by synergistic coupling of TiO2@RGO coating layer, supporting large current density for charge/discharge, is reported as an anode material for lithium-ion batteries. The new heterostructure modifies the surface of Si and TiO2 to ensure a firm bond between the interfaces, layer by layer self-assembly dispersed in the reduced graphene oxide (Si@TiO2@RGO). Compared with the regular Si@G composites, Si@TiO2@RGO exhibits excellent electrochemical performance, mainly due to the strong interfacial binding force among the three, thus the integrity of the electrode structure is ensured in the lithiation/delithiation process. As a consequence, the Si@TiO2@RGO electrode exhibits a stable reversible specific capacity of 1679.1 mAh g(-1) at a large current density of 1.4 A g(-1) after 900 cycles.
引用
收藏
页码:565 / 572
页数:8
相关论文
共 50 条
  • [1] Control of Interfacial Layers for High-Performance Porous Si Lithium-Ion Battery Anode
    Park, Hyungmin
    Lee, Sungjun
    Yoo, Seungmin
    Shin, Myoungsoo
    Kim, Jieun
    Chun, Myungjin
    Choi, Nam-Soon
    Park, Soojin
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (18) : 16360 - 16367
  • [2] Aluminum phosphide as a high-performance lithium-ion battery anode
    Lin, Hsuan-Peng
    Chen, Kuan-Ting
    Chang, Che-Bin
    Tuan, Hsing-Yu
    JOURNAL OF POWER SOURCES, 2020, 465
  • [3] Porous Si/C composite as anode materials for high-performance rechargeable lithium-ion battery
    Deng, Bingbing
    Shen, Lian
    Liu, Yangai
    Yang, Tao
    Zhang, Manshu
    Liu, Renjie
    Huang, Zhaohui
    Fang, Minghao
    Wu, Xiaowen
    CHINESE CHEMICAL LETTERS, 2017, 28 (12) : 2281 - 2284
  • [4] Multifunctional Nano-Architecting of Si Electrode for High-Performance Lithium-Ion Battery Anode
    Attia, Elhadi
    Hassan, Fathy
    Li, Matthew
    Luo, Dan
    Elkamel, Ali
    Chen, Zhongwei
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (13) : A2776 - A2783
  • [5] Porous Si/C composite as anode materials for high-performance rechargeable lithium-ion battery
    Bingbing Deng
    Lian Shen
    Yangai Liu
    Tao Yang
    Manshu Zhang
    Renjie Liu
    Zhaohui Huang
    Minghao Fang
    Xiaowen Wu
    ChineseChemicalLetters, 2017, 28 (12) : 2281 - 2284
  • [6] Double Transition-Metal Chalcogenide as a High-Performance Lithium-Ion Battery Anode Material
    Chen, Dongyun
    Ji, Ge
    Ding, Bo
    Ma, Yue
    Qu, Baihua
    Chen, Weixiang
    Lee, Jim Yang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (46) : 17901 - 17908
  • [7] Monoclinic vanadium diphosphide as a high-performance lithium-ion battery anode
    Kim, Heung-Su
    Nam, Ki-Hun
    Park, Cheol-Min
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 875
  • [8] Hard SiOC Microbeads as a High-Performance Lithium-Ion Battery Anode
    Dong, Binbin
    Han, Yehu
    Wang, Ting
    Lei, Zhanwu
    Chen, Yawei
    Wang, Feihong
    Abadikhah, Hamidreza
    Khan, Sayed Ali
    Hao, Luyuan
    Xu, Xin
    Cao, Ruiguo
    Yin, Liangjun
    Agathopoulos, Simeon
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (10): : 10183 - 10191
  • [9] High-Performance Freestanding Lithium-Ion Battery Si Anode by Weakening the Current-Collector Constraint
    Zhang, Fei
    He, Xinyi
    Yue, Fan
    Wang, Jian
    Zhang, Zhiqiang
    Huang, Qing-an
    Huang, Xiaodong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (08)
  • [10] Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High-Performance Lithium-Ion Battery Anode
    Chang, Jingbo
    Huang, Xingkang
    Zhou, Guihua
    Cui, Shumao
    Hallac, Peter B.
    Jiang, Junwei
    Hurley, Patrick T.
    Chen, Junhong
    ADVANCED MATERIALS, 2014, 26 (05) : 758 - 764