Improved Swap Heuristic for the Multiple Knapsack Problem

被引:0
作者
Laalaoui, Yacine [1 ]
机构
[1] Taif Univ, IT Dept, At Taif, Saudi Arabia
来源
ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT I | 2013年 / 7902卷
关键词
Multiple Knapsack Problem; Heuristics; Swap; GENETIC ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we describe two new improvements of the well known Martell and Toth Heuristic Method (MTHM). Our new improvements are very simple and at the same time they are very efficient since they yield to more than 15% over MTHM with an excellent execution time performance in relatively large problem instances. Further, the new improvements give a very close results to sophisticated meta-heuristics namely Genetic Algorithms with a gap less than 1% within a time slot less than a second.
引用
收藏
页码:547 / 555
页数:9
相关论文
共 7 条
[1]  
Falkenauer E., 1996, Journal of Heuristics, V2, P5, DOI 10.1007/BF00226291
[2]   A branch-and-bound algorithm for hard multiple knapsack problems [J].
Fukunaga, Alex S. .
ANNALS OF OPERATIONS RESEARCH, 2011, 184 (01) :97-119
[3]   Combining Multiple Representations in a Genetic Algorithm for the Multiple Knapsack Problem [J].
Fukunaga, Alex S. ;
Tazoe, Satoshi .
2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, :2423-+
[4]   A New Grouping Genetic Algorithm for the Multiple Knapsack Problem [J].
Fukunaga, Alex S. .
2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, :2225-2232
[5]   HEURISTIC ALGORITHMS FOR THE MULTIPLE KNAPSACK-PROBLEM [J].
MARTELLO, S ;
TOTH, P .
COMPUTING, 1981, 27 (02) :93-112
[6]   An exact algorithm for large multiple knapsack problems [J].
Pisinger, D .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 114 (03) :528-541
[7]  
Raidl G. R., 1999, Applied Computing Review, V7, P22, DOI 10.1145/335527.335530