Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space

被引:88
作者
Corsato, Chiara [1 ]
Obersnel, Franco [1 ]
Omari, Pierpaolo [1 ]
Rivetti, Sabrina [1 ]
机构
[1] Univ Trieste, Dipartimento Matemat & Geosci, I-34127 Trieste, Italy
关键词
Mean curvature; Minkowski space; Quasilinear elliptic equation; Dirichlet boundary condition; Positive solution; Existence; Multiplicity; Non-existence; Topological degree; Critical point theory; LOCAL SUPERLINEARITY; HYPERSURFACES; SUBLINEARITY;
D O I
10.1016/j.jmaa.2013.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of multiple positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space {-div(del u/root 1-vertical bar del u vertical bar(2)) = f(x, u, del u) in Omega, u = 0 on partial derivative Omega. Here Omega is a bounded regular domain in R-N and the function f = f(x, s, xi) is either sublinear, or superlinear, or sub-superlinear near s = 0. The proof combines topological and variational methods. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:227 / 239
页数:13
相关论文
共 16 条
[1]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[2]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[3]  
Bereanu C., 2012, PREPRINT
[4]   Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space [J].
Bereanu, Cristian ;
Jebelean, Petru ;
Torres, Pedro J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (01) :270-287
[5]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419
[6]  
Coelho I., 2013, TOPOL METHO IN PRESS
[7]  
Coelho I, 2012, ADV NONLINEAR STUD, V12, P621
[8]   Local superlinearity and sublinearity for indefinite semilinear elliptic problems [J].
De Figueiredo, DG ;
Gossez, JP ;
Ubilla, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) :452-467
[9]   Local "superlinearity" and "sublinearity" for the p-Laplacian [J].
de Figueiredo, Djairo G. ;
Gossez, Jean-Pierre ;
Ubilla, Pedro .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (03) :721-752
[10]   H-SURFACES IN LORENTZIAN MANIFOLDS [J].
GERHARDT, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (04) :523-553