Mitochondrial involvement and oxidative stress in temporal lobe epilepsy

被引:190
作者
Rowley, Shane [1 ,2 ]
Patel, Manisha [1 ,2 ,3 ]
机构
[1] Univ Colorado Denver, Neurosci Training Program, Aurora, CO 80045 USA
[2] Univ Colorado Denver, Sch Pharm, Aurora, CO 80045 USA
[3] Univ Colorado Denver, Sch Pharm, Dept Pharmaceut Sci, Aurora, CO 80045 USA
关键词
Epilepsy; Seizure; Neurodegeneration; Reactive oxygen; Mitochondria; Free radicals; LITHIUM-PILOCARPINE MODEL; ARACHIDONIC-ACID LEVEL; OXYGEN-FREE-RADICALS; N-ACETYL ASPARTATE; SUPEROXIDE-PRODUCTION; STATUS EPILEPTICUS; COMPLEX-I; VITAMIN-E; GLUTAMATE EXCITOTOXICITY; SEIZURE SUSCEPTIBILITY;
D O I
10.1016/j.freeradbiomed.2013.02.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A role for mitochondria and oxidative stress is emerging in acquired epilepsies such as temporal lobe epilepsy (TLE). TLE is characterized by chronic unprovoked seizures arising from an inciting insult with a variable seizure-free "latent period." The mechanism by which inciting injury induces chronic epilepsy, known as epileptogenesis, involves multiple cellular, molecular, and physiological changes resulting in altered hyperexcitable circuitry. Whether mitochondrial and redox mechanisms contribute to epileptogenesis remains to be fully clarified. Mitochondrial impairment is revealed in studies from human imaging and tissue analysis from TLE patients. The collective data from animal models suggest that steady-state mitochondrial reactive oxygen species and resultant oxidative damage to cellular macromolecules occur during different phases of epileptogenesis. This review discusses evidence for the role of mitochondria and redox changes occurring in human and experimental TLE. Potential mechanisms by which mitochondrial energetic and redox mechanisms contribute to increased neuronal excitability and therapeutic approaches to target TLE are delineated. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:121 / 131
页数:11
相关论文
共 107 条
[1]  
AMICI A, 1989, J BIOL CHEM, V264, P3341
[2]   Mitochondrial dysfunction in neurodegenerative disorders [J].
Baron, M. ;
Kudin, A. P. ;
Kunz, W. S. .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2007, 35 :1228-1231
[3]   Effects of the vitamin E in catalase activities in hippocampus after status epilepticus induced by pilocarpine in Wistar rats [J].
Barros, D. O. ;
Xavier, S. M. L. ;
Barbosa, C. O. ;
Silva, R. F. ;
Freitas, R. L. M. ;
Maia, F. D. ;
Oliveira, A. A. ;
Freitas, R. M. ;
Takahashi, R. N. .
NEUROSCIENCE LETTERS, 2007, 416 (03) :227-230
[4]   Mitochondrial DNA repair of oxidative damage in mammalian cells [J].
Bohr, VA ;
Stevnsner, T ;
de Souza-Pinto, NC .
GENE, 2002, 286 (01) :127-134
[5]   Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet [J].
Bough, Kristopher J. ;
Wetherington, Jonathon ;
Hassel, Bjornar ;
Pare, Jean Francois ;
Gawryluk, Jeremy W. ;
Greene, James G. ;
Shaw, Renee ;
Smith, Yoland ;
Geiger, Jonathan D. ;
Dingledine, Raymond J. .
ANNALS OF NEUROLOGY, 2006, 60 (02) :223-235
[6]   Assessing mitochondrial dysfunction in cells [J].
Brand, Martin D. ;
Nicholls, David G. .
BIOCHEMICAL JOURNAL, 2011, 435 :297-312
[7]   OXYGEN-FREE RADICALS IN RAT LIMBIC STRUCTURES AFTER KAINATE-INDUCED SEIZURES [J].
BRUCE, AJ ;
BAUDRY, M .
FREE RADICAL BIOLOGY AND MEDICINE, 1995, 18 (06) :993-1002
[8]   Mitochondrial aconitase knockdown attenuates paraquat-induced dopaminergic cell death via decreased cellular metabolism and release of iron and H2O2 [J].
Cantu, David ;
Fulton, Ruth E. ;
Drechsel, Derek A. ;
Patel, Manisha .
JOURNAL OF NEUROCHEMISTRY, 2011, 118 (01) :79-92
[9]   Oxidative Inactivation of Mitochondrial Aconitase Results in Iron and H2O2-Mediated Neurotoxicity in Rat Primary Mesencephalic Cultures [J].
Cantu, David ;
Schaack, Jerome ;
Patel, Manisha .
PLOS ONE, 2009, 4 (09)
[10]   MICE LACKING EXTRACELLULAR-SUPEROXIDE DISMUTASE ARE MORE SENSITIVE TO HYPEROXIA [J].
CARLSSON, LM ;
JONSSON, J ;
EDLUND, T ;
MARKLUND, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6264-6268