On the Fibonacci numbers of trees

被引:0
作者
Zhao, HX [1 ]
Li, XL
机构
[1] Qinghai Normal Univ, Dept Math, Xining 810008, Qinghai, Peoples R China
[2] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
来源
FIBONACCI QUARTERLY | 2006年 / 44卷 / 01期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph G, Fibonacci Number of G is defined as the number of subsets of V(G) in which no two vertices are adjacent in G. In this paper, we first investigate the orderings of two classes of trees by their Fibonacci numbers. Using these orderings, we determine the unique tree with the second, and respectively the third smallest Fibonacci number among all trees with n vertices.
引用
收藏
页码:32 / 38
页数:7
相关论文
共 6 条
[1]  
Alameddine AF, 1998, FIBONACCI QUART, V36, P206
[2]  
Bondy J.A., 2008, GRAD TEXTS MATH
[3]  
Li X.Y., 2003, J COAL SCI ENG CHINA, P47, DOI [10.1016/j.ssci.2018.12.025, DOI 10.1016/J.SSCI.2018.12.025]
[4]  
Merrifield R.E., 1989, TOPOLOGICAL METHODS
[5]  
PRODINGER H, 1982, FIBONACCI QUART, V20, P16
[6]  
WANG Y, 2001, PUBLICATIONS I MATH, V6983, P41