An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputs

被引:107
作者
Liu, Derong [1 ]
Wang, Ding [1 ]
Yang, Xiong [1 ]
机构
[1] Chinese Acad, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金; 中国博士后科学基金;
关键词
Adaptive dynamic programming; Approximate dynamic programming; Control constraints; Globalized dual heuristic programming; Neural networks; Optimal control; NEURAL-NETWORKS; CONTROL DESIGN; REINFORCEMENT; LMI;
D O I
10.1016/j.ins.2012.07.006
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the adaptive dynamic programming (ADP) approach is employed for designing an optimal controller of unknown discrete-time nonlinear systems with control constraints. A neural network is constructed for identifying the unknown dynamical system with stability proof. Then, the iterative ADP algorithm is developed to solve the optimal control problem with convergence analysis. Two other neural networks are introduced for approximating the cost function and its derivatives and the control law, under the framework of globalized dual heuristic programming technique. Furthermore, two simulation examples are included to verify the theoretical results. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:331 / 342
页数:12
相关论文
共 37 条
[1]   Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach [J].
Abu-Khalaf, M ;
Lewis, FL .
AUTOMATICA, 2005, 41 (05) :779-791
[2]   Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof [J].
Al-Tamimi, Asma ;
Lewis, Frank L. ;
Abu-Khalaf, Murad .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (04) :943-949
[3]   Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization [J].
Aliev, Rafik A. ;
Pedrycz, Witold ;
Guirimov, Babek G. ;
Aliev, Rashad R. ;
Ilhan, Umit ;
Babagil, Mustafa ;
Mammadli, Sadik .
INFORMATION SCIENCES, 2011, 181 (09) :1591-1608
[4]  
[Anonymous], 1996, Neuro-dynamic programming
[5]  
Bellman R. E., 1957, Dynamic programming. Princeton landmarks in mathematics
[6]   Temporal Difference Methods for General Projected Equations [J].
Bertsekas, Dimitri P. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2011, 56 (09) :2128-2139
[7]   Direct nonlinear control design: The virtual reference feedback tuning (VRFT) approach [J].
Campi, MC ;
Savaresi, SM .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (01) :14-27
[8]   A new approach for neural control of nonlinear discrete dynamic systems [J].
Canelon, JI ;
Shieh, LS ;
Karayiannis, NB .
INFORMATION SCIENCES, 2005, 174 (3-4) :177-196
[9]   Optimal control of unknown affine nonlinear discrete-time systems using offline-trained neural networks with proof of convergence [J].
Dierks, Travis ;
Thumati, Balaje T. ;
Jagannathan, S. .
NEURAL NETWORKS, 2009, 22 (5-6) :851-860
[10]   Example-based learning particle swarm optimization for continuous optimization [J].
Huang, Han ;
Qin, Hu ;
Hao, Zhifeng ;
Lim, Andrew .
INFORMATION SCIENCES, 2012, 182 (01) :125-138