Tensor-based Offset-Sparsity Decomposition for Hyperspectral Image Classification

被引:0
作者
Tian, Long [1 ]
Du, Qian [1 ]
Younan, Nicolas [1 ]
Kopriva, Ivica [2 ]
机构
[1] Mississippi State Univ, Dept Elect & Comp Engn, Mississippi State, MS 39762 USA
[2] Rudjer Boskovic Inst, Div Laser & Atom Res & Dev, Zagreb, Croatia
来源
2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2017年
关键词
Tensor; low-rank recovery; spatial-spectral segmentation; classification; hyperspectral imagery;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, the tensor-based offset-sparsity decomposition (TOSD) method, or low-rank and sparse decomposition, is applied to hyperspectral imagery, where the low-rank tensor is considered to be enhanced or pruned data and used for classification. In the tensor form of dataset, all the information of the original 3D data cube, includes spatial and spectral information, can be better reserved. To make the low-rank assumption more possibly true, spatial and spectral segmentations are conducted in a preprocessing step for the TOSD. The experimental results demonstrate the TOSD offers better performance than the matrix-based one, and the spatial-spectral segmentation can further improve the performance.
引用
收藏
页码:3656 / 3659
页数:4
相关论文
共 15 条
[1]   Higher order singular value decomposition in quantum chemistry [J].
Bell, F. ;
Lambrecht, D. S. ;
Head-Gordon, M. .
MOLECULAR PHYSICS, 2010, 108 (19-20) :2759-2773
[2]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[3]   Tensor Decompositions for Signal Processing Applications [J].
Cichocki, Andrzej ;
Mandic, Danilo P. ;
Anh Huy Phan ;
Caiafa, Cesar F. ;
Zhou, Guoxu ;
Zhao, Qibin ;
De Lathauwer, Lieven .
IEEE SIGNAL PROCESSING MAGAZINE, 2015, 32 (02) :145-163
[4]  
Harshman R. A., 1970, UCLA WORKING PAPERS, V16, P1, DOI DOI 10.1134/S0036023613040165
[5]   Tensor Analysis and Fusion of Multimodal Brain Images [J].
Karahan, Esin ;
Rojas-Lopez, Pedro A. ;
Bringas-Vega, Maria L. ;
Valdes-Hernandez, Pedro A. ;
Valdes-Sosa, Pedro A. .
PROCEEDINGS OF THE IEEE, 2015, 103 (09) :1531-1559
[6]   Tensor Decompositions and Applications [J].
Kolda, Tamara G. ;
Bader, Brett W. .
SIAM REVIEW, 2009, 51 (03) :455-500
[7]   Offset-sparsity decomposition for automated enhancement of color microscopic image of stained specimen in histopathology [J].
Kopriva, Ivica ;
Hadzija, Marijana Popovic ;
Hadzija, Mirko ;
Aralica, Gorana .
JOURNAL OF BIOMEDICAL OPTICS, 2015, 20 (07)
[8]   Hyperspectral image denoising using the robust low-rank tensor recovery [J].
Li, Chang ;
Ma, Yong ;
Huang, Jun ;
Mei, Xiaoguang ;
Ma, Jiayi .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (09) :1604-1612
[9]   Denoising of Hyperspectral Images Using the PARAFAC Model and Statistical Performance Analysis [J].
Liu, Xuefeng ;
Bourennane, Salah ;
Fossati, Caroline .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2012, 50 (10) :3717-3724
[10]  
Mei S., 2017, IEEE J SELECTED TOPI, V10