User-friendly, ultra-fast simulation of detector DQE(f)

被引:3
作者
Abel, Eric [1 ]
Sun, Mingshan [1 ]
Constantin, Dragos [2 ]
Fahrig, Rebecca [2 ]
Star-Lack, Josh [1 ]
机构
[1] Varian Med Syst Inc, Palo Alto, CA USA
[2] Stanford Univ, Palo Alto, CA 94304 USA
来源
MEDICAL IMAGING 2013: PHYSICS OF MEDICAL IMAGING | 2013年 / 8668卷
关键词
MONTE-CARLO-SIMULATION; MODULATION TRANSFER-FUNCTION; SCREENS; PHOSPHORS; NOISE;
D O I
10.1117/12.2008411
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Development of the indirect scintillating detector is hindered not only by the cost and lead-time of manufacturing but also the computational resources required for numerical modeling. The simulation is bogged down by the number of x-ray photons (gammas) required to duplicate the experimental flood image ensemble necessary to characterize the noise power spectrum (NPS), a key input into the detective quantum efficiency (DQE). The simulation approach presented in this work exploits our previously reported procedure named Fujita-Lubberts-Swank (FLS)(6). This novel technique computes the Lubberts NPS from an ensemble of single gamma point spread functions (PSF) and, as a result, allows for a significant reduction in the number of simulated particles, enabling full DQE(f) simulations with optical transport in less than one CPU-hour. For a given detector and spectrum, the FLS execution time is determined primarily by the number of gamma and optical photons initiated. The optimal number of each varies with the detector specifics. In this work, we present a different simulation paradigm in which Geant4 was customized to allow for the user to specify the quantities of detected gammas, and detected opticals per gamma. These quantities were empirically shown to be constant over a small selection of different detector types. While work still needs to be done to explore the range of detectors for which this technique will work, we demonstrate a concept which brings added convenience and efficiency to FLS detector simulations.
引用
收藏
页数:7
相关论文
共 15 条
[1]  
Abel E., 2013, MED PHYS UNPUB, V0, P0
[2]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[3]   Lubberts effect in columnar phosphors [J].
Badano, A ;
Gagne, RM ;
Gallas, BD ;
Jennings, RJ ;
Boswell, JS ;
Myers, KJ .
MEDICAL PHYSICS, 2004, 31 (11) :3122-3131
[4]   MONTE-CARLO SIMULATION OF THE SCATTERED RADIATION DISTRIBUTION IN DIAGNOSTIC-RADIOLOGY [J].
BOONE, JM ;
SEIBERT, JA .
MEDICAL PHYSICS, 1988, 15 (05) :713-720
[5]   Calculation of the modulation transfer function for the X-ray imaging detector DIXI using Monte Carlo simulation data [J].
del Risco Norrlid, L ;
Rönnqvist, C ;
Fransson, K ;
Brenner, R ;
Gustafsson, L ;
Edling, F ;
Kullander, S .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2001, 466 (01) :209-217
[6]   A SIMPLE METHOD FOR DETERMINING THE MODULATION TRANSFER-FUNCTION IN DIGITAL RADIOGRAPHY [J].
FUJITA, H ;
TSAI, DY ;
ITOH, T ;
DOI, K ;
MORISHITA, J ;
UEDA, K ;
OHTSUKA, A .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1992, 11 (01) :34-39
[7]  
International Electrotechnical Commission, 2003, 622201200310 IEC, V1
[8]   Monte Carlo simulations of the imaging performance of metal plate/phosphor screens used in radiotherapy [J].
Kausch, C ;
Schreiber, B ;
Kreuder, F ;
Schmidt, R ;
Dössel, O .
MEDICAL PHYSICS, 1999, 26 (10) :2113-2124
[9]   An X-ray imaging detector based on pixel structured scintillator [J].
Kim, Byoung-Jik ;
Cho, Gyuseong ;
Cha, Bo Kyung ;
Kang, Bosun .
RADIATION MEASUREMENTS, 2007, 42 (08) :1415-1418
[10]   Modeling granular phosphor screens by Monte Carlo methods [J].
Liaparinos, Panagiotis F. ;
Kandarakis, Ioannis S. ;
Cavouras, Dionisis A. ;
Delis, Harry B. ;
Panayiotakis, George S. .
MEDICAL PHYSICS, 2006, 33 (12) :4502-4514