THE DEPENDENCE OF THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVAE ON THE EQUATION OF STATE

被引:54
作者
Couch, Sean M. [1 ]
机构
[1] Univ Chicago, Dept Astron & Astrophys, Flash Ctr Computat Sci, Chicago, IL 60637 USA
关键词
hydrodynamics; methods: numerical; shock waves; stars: interiors; supernovae: general; BLACK-HOLE FORMATION; ACCRETION-SHOCK INSTABILITY; PIECEWISE PARABOLIC METHOD; CIRCLE-DOT STAR; EXPLOSIONS; SIMULATIONS; DRIVEN; CONVECTION; MAGNETOHYDRODYNAMICS; HYDRODYNAMICS;
D O I
10.1088/0004-637X/765/1/29
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the dependence of the delayed neutrino-heating mechanism for core-collapse supernovae on the equation of state (EOS). Using a simplified treatment of the neutrino physics with a parameterized neutrino luminosity, we explore the relationship between explosion time, mass accretion rate, and neutrino luminosity for a 15 M-circle dot progenitor in 1D and 2D. We test the EOS most commonly used in core-collapse simulations: the models of Lattimer & Swesty and the model of Shen et al. We find that for a given neutrino luminosity, "stiffer" EOS, where stiffness is determined by a combination of nuclear matter properties not just incompressibility, K, explode later than "softer" EOS. The EOS of Shen et al., being the stiffest EOS, by virtue of larger incompressibility and symmetry energy slope, L, explodes later than any of the Lattimer & Swesty EOS models. Amongst the Lattimer & Swesty EOS that all share the same value of L, the explosion time increases with increasing nuclear incompressibility, K. We find that this holds in both 1D and 2D, while for all of the models, explosions are obtained more easily in 2D than in 1D. We argue that this EOS dependence is due in part to a greater amount of acoustic flux from denser proto-neutron star atmospheres that result from a softer EOS. We also discuss the relevance of approximate instability criteria to realistic simulations.
引用
收藏
页数:12
相关论文
共 68 条
[1]  
[Anonymous], NUCLEOSYNTHESIS CHAL
[2]   Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction [J].
Balsara, DS .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2004, 151 (01) :149-184
[3]   SUPERNOVAE AND THE NUCLEAR-EQUATION OF STATE AT HIGH-DENSITIES [J].
BARON, E ;
COOPERSTEIN, J ;
KAHANA, S .
NUCLEAR PHYSICS A, 1985, 440 (04) :744-754
[4]   TYPE-II SUPERNOVAE IN 12M. AND 15M. STARS - THE EQUATION OF STATE AND GENERAL-RELATIVITY [J].
BARON, E ;
COOPERSTEIN, J ;
KAHANA, S .
PHYSICAL REVIEW LETTERS, 1985, 55 (01) :126-129
[5]   REVIVAL OF A STALLED SUPERNOVA SHOCK BY NEUTRINO HEATING [J].
BETHE, HA ;
WILSON, JR .
ASTROPHYSICAL JOURNAL, 1985, 295 (01) :14-23
[6]   The spherical accretion shock instability in the linear regime [J].
Blondin, JM ;
Mezzacappa, A .
ASTROPHYSICAL JOURNAL, 2006, 642 (01) :401-409
[7]   Stability of standing accretion shocks, with an eye toward core-collapse supernovae [J].
Blondin, JM ;
Mezzacappa, A ;
DeMarino, C .
ASTROPHYSICAL JOURNAL, 2003, 584 (02) :971-980
[8]   2D and 3D core-collapse supernovae simulation results obtained with the CHIMERA code [J].
Bruenn, S. W. ;
Mezzacappa, A. ;
Hix, W. R. ;
Blondin, J. M. ;
Marronetti, P. ;
Messer, O. E. B. ;
Dirk, C. J. ;
Yoshida, S. .
SCIDAC 2009: SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING, 2009, 180
[9]   Features of the acoustic mechanism of core-collapse supernova explosions [J].
Burrows, A. ;
Livne, E. ;
Dessart, L. ;
Ott, C. D. ;
Murphy, J. .
ASTROPHYSICAL JOURNAL, 2007, 655 (01) :416-433
[10]   A new mechanism for core-collapse supernova explosions [J].
Burrows, A ;
Livne, E ;
Dessart, L ;
Ott, CD ;
Murphy, J .
ASTROPHYSICAL JOURNAL, 2006, 640 (02) :878-890