Advanced glycation endproducts induce a proliferative response in vascular smooth muscle cells via altered calcium signaling

被引:25
作者
David, Kanola C. [1 ]
Scott, Roderick H. [1 ]
Nixon, Graeme F. [1 ]
机构
[1] Univ Aberdeen, Sch Med Sci, Aberdeen AB25 2ZD, Scotland
关键词
Vascular smooth muscle; Diabetes; Calcium; Proliferation; Glycation;
D O I
10.1016/j.bcp.2008.08.011
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Advanced glycation endproducts (AGEs) are proteins that accumulate in the plasma of diabetics as a result of increased glucose concentrations and are closely linked with vascular disease. The mechanisms involved are still not clear. The aim of this study was to investigate whether AGE-induced changes in calcium (Ca2+) homeostasis could contribute to these mechanisms. Cultured porcine coronary artery vascular smooth muscle (VSM) cells were preincubated with glycated albumin for 96 h. The sphingosine 1-phosphate (S1P)-induced intracellular Ca2+ increase, although not increased in amplitude, was significantly prolonged in cells preincubated with glycated albumin. Intracellular Ca2+ imaging and electrophysiological. recording of ion channel currents following release of caged Ca2+ indicated that this prolonged Ca2+ rise occurred predominantly via changes in Ca2+-induced Ca2+ release. Preincubation with glycated albumin also resulted in a threefold increase in expression of the receptor for AGE. As a consequence of the prolonged intracellular Ca2+ rise following preincubation with glycated albumin, the S1P-induced activation of the Ca2+- dependent phosphatase, calcineurin (CaN) was increased. This resulted in increased S1P-induced activation of the Ca2+-dependent transcription factor, nuclear factor of activated T cells (NFATc). BrdU incorporation in VSM cells was increased in cells preincubated with glycated albumin and was inhibited by the CaN inhibitor, cyclosporin A. In conclusion, AGE can induce VSM proliferation via a prolonged agonist-induced Ca2+ increase leading to increased activation of CaN and subsequently NFATc. This mechanism may contribute to pathogenesis of vascular disease in diabetes mellitus. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1110 / 1120
页数:11
相关论文
共 58 条
[1]   Advanced glycation endproducts: what is their relevance to diabetic complications? [J].
Ahmed, N. ;
Thornalley, P. J. .
DIABETES OBESITY & METABOLISM, 2007, 9 (03) :233-245
[2]   Role of oxidative stress in diabetic complications - A new perspective on an old paradigm [J].
Baynes, JW ;
Thorpe, SR .
DIABETES, 1999, 48 (01) :1-9
[3]   Diabetes and atherosclerosis - Epidemiology, pathophysiology, and management [J].
Beckman, JA ;
Creager, MA ;
Libby, P .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2002, 287 (19) :2570-2581
[4]   Increased serum levels of advanced glycation end products (AGEs) in children and adolescents with IDDM [J].
Berg, TJ ;
DahlJorgensen, K ;
Torjesen, PA ;
Hanssen, KF .
DIABETES CARE, 1997, 20 (06) :1006-1008
[5]   Understanding RAGE, the receptor for advanced glycation end products [J].
Bierhaus, A ;
Humpert, PM ;
Morcos, M ;
Wendt, T ;
Chavakis, T ;
Arnold, B ;
Stern, DM ;
Nawroth, PP .
JOURNAL OF MOLECULAR MEDICINE-JMM, 2005, 83 (11) :876-886
[6]  
Bierhaus A, 1997, CIRCULATION, V96, P2262
[7]  
BRETT J, 1993, AM J PATHOL, V143, P1699
[8]   Biochemistry and molecular cell biology of diabetic complications [J].
Brownlee, M .
NATURE, 2001, 414 (6865) :813-820
[9]   Comparison of the effects of inhibitors of aldose reductase and sorbitol dehydrogenase on neurovascular function, nerve conduction and tissue polyol pathway metabolites in streptozotocin-diabetic rats [J].
Cameron, NE ;
Cotter, MA ;
Basso, M ;
Hohman, TC .
DIABETOLOGIA, 1997, 40 (03) :271-281
[10]   Coupling of Ca2+ to CREB activation and gene expression in intact cerebral arteries from mouse -: Roles of ryanodine receptors and voltage-dependent Ca2+ channels [J].
Cartin, L ;
Lounsbury, KM ;
Nelson, MT .
CIRCULATION RESEARCH, 2000, 86 (07) :760-767