Supplementation with Sodium Butyrate Modulates the Composition of the Gut Microbiota and Ameliorates High-Fat Diet-Induced Obesity in Mice

被引:121
作者
Fang, Wanjun [1 ,2 ,3 ]
Xue, Hongliang [1 ,2 ]
Chen, Xu [1 ,2 ]
Chen, Ke [1 ,2 ]
Ling, Wenhua [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Publ Hlth, Dept Nutr, Guangzhou, Guangdong, Peoples R China
[2] Guangdong Prov Key Lab Food Nutr & Hlth, Guangzhou, Guangdong, Peoples R China
[3] Ningbo Women & Childrens Hosp, Dept Clin Nutr, Ningbo, Zhejiang, Peoples R China
关键词
butyrate; obesity; inflammation; lipopolysaccharide; gut microbiota; ADIPOSE-TISSUE; INSULIN-RESISTANCE; METABOLIC SYNDROME; INFLAMMATION; HEALTH; ACTIVATION; DYSBIOSIS; CAPACITY; DISEASE; BARRIER;
D O I
10.1093/jn/nxy324
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Background: Short-chain fatty acids (SCFAs) have been reported to ameliorate obesity. However, the underlying mechanisms require further investigation. Objective: The aim of this study was to determine the role of butyrate, an SCFA, in the regulation of obesity, low-grade chronic inflammation, and alterations of microbiota composition in mice. Methods: Male C57BL/6J mice, 4-5 wk of age, were divided into 3 groups (n = 8 mice/group): low-fat diet (LFD; 10% energy from fat), high-fat diet (HFD; 45% energy from fat), or high-fat diet plus sodium butyrate (HSB). HSB mice received sodium butyrate at a concentration of 0.1 M in drinking water for 12 wk. Measures of inflammation, obesity, and intestinal integrity were assessed. Serum lipopolysaccharide (LPS) concentrations were measured in the 3 groups. Fecal samples were collected for gut microbiota analysis. Results: In HFD mice, body weight gain and hepatic triglyceride (TG), serum interleukin-6 (IL-6), and serum tumor necrosis factor (TNF)-a levels were 1-4 times higher than those in LFD mice (P < 0.05); they were 34-42% lower in HSB mice compared with HFD mice (P < 0.05). The HFD group had 28%-48% lower mRNA expression of both Tjp1 and Ocln in the ileum and colon compared with levels in LFD or HSB mice (P < 0.05), whereas there was no difference in expression levels between LFD and HSB mice. Furthermore, in HSB mice, serum LPS concentration was 53% lower compared with that in HFD mice but still 23% higher than that in LFD mice (P < 0.05). Results from principal component analysis showed that HSB and LFD mice had a similar gut microbiota structure, which was significantly different from that in HFD mice (P < 0.05). Conclusions: Sodium butyrate administration beneficially changed HFD-induced gut microbiota composition and improved intestinal barrier, leading to lower serum LPS concentrations. These changes may correspond with improvements in obesity-related lipid accumulation and low-grade chronic inflammation.
引用
收藏
页码:747 / 754
页数:8
相关论文
共 50 条
  • [41] The crude guava polysaccharides ameliorate high-fat diet-induced obesity in mice via reshaping gut microbiota
    Li, Yuanyuan
    Bai, Dongsong
    Lu, Yongming
    Chen, Jia
    Yang, Haoning
    Mu, Yu
    Xu, Jialin
    Huang, Xueshi
    Li, Liya
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 213 : 234 - 246
  • [42] Pectin-derived oligogalacturonic acids ameliorate high-fat diet-induced obesity in mice by regulating gut microbiota and inflammation
    Li, Qian
    Wang, Man
    Zhang, Yue
    Li, Yubing
    Zhang, Xianfen
    Li, Haowei
    Peng, Ying
    Zhu, Changlian
    Zheng, Pengyuan
    Yang, Shaolong
    Li, Jiang
    Lin, Jiafu
    He, Rong
    Zhang, Hongmei
    Zhou, Huoxiang
    JOURNAL OF FUNCTIONAL FOODS, 2024, 112
  • [43] Beneficial effects of mung bean seed coat on the prevention of high-fat diet-induced obesity and the modulation of gut microbiota in mice
    Hou, Dianzhi
    Zhao, Qingyu
    Yousaf, Laraib
    Xue, Yong
    Shen, Qun
    EUROPEAN JOURNAL OF NUTRITION, 2021, 60 (04) : 2029 - 2045
  • [44] Poly-γ-D-glutamic acid ameliorates obesity by modulating gut microbiota dysbiosis in high-fat diet-induced obesity mice
    Oh, Dong Nyoung
    Park, So Young
    Jang, Won Je
    Lee, Jong Min
    JOURNAL OF FUNCTIONAL FOODS, 2025, 127
  • [45] Ethanol extract of propolis prevents high-fat diet-induced insulin resistance and obesity in association with modulation of gut microbiota in mice
    Cai, Wei
    Xu, Jixiong
    Li, Gang
    Liu, Tao
    Guo, Xiali
    Wang, Huajie
    Luo, Liping
    FOOD RESEARCH INTERNATIONAL, 2020, 130 (130)
  • [46] Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-Induced Obese Mice Fed a High-Fat Diet
    Shin, Su-Kyung
    Cho, Su-Jung
    Jung, Un Ju
    Ryu, Ri
    Choi, Myung-Sook
    NUTRIENTS, 2016, 8 (02)
  • [47] Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier
    Da Zhou
    Qin Pan
    Feng-Zhi Xin
    Rui-Nan Zhang
    Chong-Xin He
    Guang-Yu Chen
    Chang Liu
    Yuan-Wen Chen
    Jian-Gao Fan
    World Journal of Gastroenterology, 2017, 23 (01) : 60 - 75
  • [48] Lactobacillus breuis OK56 ameliorates high-fat diet-induced obesity in mice by inhibiting NF-κB activation and gut microbial LPS production
    Kim, Kyung-Ah
    Jeong, Jin-Ju
    Kim, Dong-Hyun
    JOURNAL OF FUNCTIONAL FOODS, 2015, 13 : 183 - 191
  • [49] Lactobacillus fermentum CECT5716 ameliorates high fat diet-induced obesity in mice through modulation of gut microbiota dysbiosis
    Molina-Tijeras, Jose Alberto
    Diez-Echave, Patricia
    Vezza, Teresa
    Hidalgo-Garcia, Laura
    Ruiz-Malagon, Antonio Jesus
    Rodriguez-Sojo, Maria Jesus
    Romero, Miguel
    Robles-Vera, Inaki
    Garcia, Federico
    Plaza-Diaz, Julio
    Olivares, Monica
    Duarte, Juan
    Rodriguez-Cabezas, Maria Elena
    Rodriguez-Nogales, Alba
    Galvez, Julio
    PHARMACOLOGICAL RESEARCH, 2021, 167
  • [50] Clcn3 deficiency ameliorates high-fat diet-induced obesity and adipose tissue macrophage inflammation in mice
    Ma, Ming-ming
    Jin, Chen-chen
    Huang, Xue-lian
    Sun, Lu
    Zhou, Hui
    Wen, Xue-jun
    Huang, Xiong-qing
    Du, Jie-yi
    Sun, Hong-shuo
    Ren, Zhu-xiao
    Liu, Jie
    Guan, Yong-yuan
    Zhao, Xiao-miao
    Wang, Guan-lei
    ACTA PHARMACOLOGICA SINICA, 2019, 40 (12) : 1532 - 1543