Error bounds on the approximation of functions and partial derivatives by quadratic spline quasi-interpolants on non-uniform criss-cross triangulations of a rectangular domain

被引:9
作者
Dagnino, Catterina [1 ]
Remogna, Sara [1 ]
Sablonniere, Paul [2 ]
机构
[1] Univ Turin, Dipartimento Matemat, I-10123 Turin, Italy
[2] INSA Rennes, Ctr Math, F-35708 Rennes 7, France
关键词
Bivariate splines; Quasi-interpolation; Derivative approximation;
D O I
10.1007/s10543-012-0392-2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Given a non-uniform criss-cross triangulation of a rectangular domain Omega, we consider the approximation of a function f and its partial derivatives, by general C (1) quadratic spline quasi-interpolants and their derivatives. We give error bounds in terms of the smoothness of f and the characteristics of the triangulation. Then, the preceding theoretical results are compared with similar results in the literature. Finally, several examples are proposed for illustrating various applications of the quasi-interpolants studied in the paper.
引用
收藏
页码:87 / 109
页数:23
相关论文
共 31 条
[1]  
Allouch C., 2011, THESIS U OUJDA MAROC
[2]  
[Anonymous], 2009, ISOGEOMETRIC ANAL IN
[3]   Minimizing the quasi-interpolation error for bivariate discrete quasi-interpolants [J].
Barrera-Rosillo, Domingo ;
Jose Ibanez-Perez, Maria .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 224 (01) :250-268
[4]  
BRUNNER H, 1985, MATH COMPUT, V45, P417, DOI 10.1090/S0025-5718-1985-0804933-3
[5]  
Chui C.K., 1988, Multivariate Splines
[6]  
Chui C.K, 1984, APPROX THEORY APPL, V1, P11
[7]  
Chui C.K., 1983, J CAN MATH SOC C P, V3, P67
[8]  
CHUI CK, 1984, SCI SIN A-MATH P A T, V27, P1129
[9]  
CHUI CK, 1986, ISNM, V81, P30
[10]   On the construction of local quadratic spline quasi-interpolants on bounded rectangular domains [J].
Dagnino, C. ;
Lamberti, P. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 221 (02) :367-375